getDefaultOpts {tensorBF} | R Documentation |
A function for generating a default set of parameters for Bayesian Tensor Factorization methods
Description
getDefaultOpts
returns the default choices for model parameters.
Usage
getDefaultOpts(method = "CP")
Arguments
method |
the factorization method for which options are required. Currently only "CP" (default) is supported. |
Details
This function returns options for defining the model's high-level structure (sparsity priors), the hyperparameters, and the uninformative priors. We recommend keeping these as provided.
Value
A list with the following model options:
ARDX |
TRUE: use elementwise ARD prior for X, resulting in sparse X's. FALSE: use guassian prior for a dense X (default). |
ARDW |
TRUE: use elementwise ARD prior for W, resulting in sparse W's (default). FALSE: use guassian prior for a dense W. |
ARDU |
TRUE: use elementwise ARD prior for U, resulting in sparse U's. FALSE: use guassian prior for a dense U (default). |
iter.burnin |
The number of burn-in samples (default 5000). |
iter.sampling |
The number of saved posterior samples (default 50). |
iter.thinning |
The thinning factor to use in saving posterior samples (default 10). |
prior.alpha_0t |
The shape parameter for residual noise (tau's) prior (default 1). |
prior.beta_0t |
The rate parameter for residual noise (tau's) prior (default 1). |
prior.alpha_0 |
The shape parameter for the ARD precisions (default 1e-3). |
prior.beta_0 |
The rate parameter for the ARD precisions (default 1e-3). |
prior.betaW1 |
Bernoulli prior for component activiations, prior.betaW1 < prior.betaW2: sparsity inducing (default: 1). |
prior.betaW2 |
Bernoulli prior for component activation, (default: 1). |
init.tau |
The initial value for noise precision (default 1e3). |
verbose |
The verbosity level. 0=no printing, 1=moderate printing, 2=maximal printing (default 1). |
checkConvergence |
Check for the convergence of the data reconstruction, based on the Geweke diagnostic (default TRUE). |
Examples
#To run the algorithm with other values:
opts <- getDefaultOpts()
opts$ARDW <- FALSE #Switch off Feature-level Sparsity on W's
## Not run: res <- tensorBF(Y=Y,opts=opts)