weighted_rayleigh {tectonicr} | R Documentation |
Weighted Goodness-of-fit Test for Circular Data
Description
Weighted version of the Rayleigh test (or V0-test) for uniformity against a distribution with a priori expected von Mises concentration.
Usage
weighted_rayleigh(x, mu = NULL, w = NULL, axial = TRUE)
Arguments
x |
numeric vector. Values in degrees |
mu |
The a priori expected direction (in degrees) for the alternative hypothesis. |
w |
numeric vector weights of length |
axial |
logical. Whether the data are axial, i.e. |
Details
The Null hypothesis is uniformity (randomness). The alternative is a
distribution with a specified mean direction (prd
).
If statistic > p.value
, the null hypothesis is rejected.
If not, the alternative cannot be excluded.
Value
a list with the components:
statistic
Test statistic
p.value
significance level of the test statistic
See Also
Examples
# Load data
data("cpm_models")
data(san_andreas)
PoR <- equivalent_rotation(subset(cpm_models, model == "NNR-MORVEL56"), "na", "pa")
sa.por <- PoR_shmax(san_andreas, PoR, "right")
data("iceland")
PoR.ice <- equivalent_rotation(subset(cpm_models, model == "NNR-MORVEL56"), "eu", "na")
ice.por <- PoR_shmax(iceland, PoR.ice, "out")
data("tibet")
PoR.tib <- equivalent_rotation(subset(cpm_models, model == "NNR-MORVEL56"), "eu", "in")
tibet.por <- PoR_shmax(tibet, PoR.tib, "in")
# GOF test:
weighted_rayleigh(tibet.por$azi.PoR, mu = 90, w = 1 / tibet$unc)
weighted_rayleigh(ice.por$azi.PoR, mu = 0, w = 1 / iceland$unc)
weighted_rayleigh(sa.por$azi.PoR, mu = 135, w = 1 / san_andreas$unc)