.get_gtw {tealeaves} | R Documentation |
g_tw: total conductance to water vapour (m/s)
Description
g_tw: total conductance to water vapour (m/s)
Usage
.get_gtw(T_leaf, pars, unitless)
Arguments
T_leaf |
Leaf temperature in Kelvin |
pars |
Concatenated parameters ( |
unitless |
Logical. Should function use parameters with |
Details
Total conductance to water vapor: The total conductance to water vapor (g_\mathrm{tw}
) is the sum of the parallel lower (abaxial) and upper (adaxial) conductances:
g_\mathrm{tw} = g_\mathrm{w,lower} + g_\mathrm{w,upper}
The conductance to water vapor on each surface is a function of parallel stomatal (g_\mathrm{sw}
) and cuticular (g_\mathrm{uw}
) conductances in series with the boundary layer conductance (g_\mathrm{bw}
). The stomatal, cuticular, and boundary layer conductance on the lower surface are:
g_\mathrm{sw,lower} = g_\mathrm{sw} (1 - sr) R (T_\mathrm{leaf} + T_\mathrm{air}) / 2
g_\mathrm{uw,lower} = g_\mathrm{uw} / 2 R (T_\mathrm{leaf} + T_\mathrm{air}) / 2
See .get_gbw
for details on calculating boundary layer conductance. The equations for the upper surface are:
g_\mathrm{sw,upper} = g_\mathrm{sw} sr R (T_\mathrm{leaf} + T_\mathrm{air}) / 2
g_\mathrm{uw,upper} = g_\mathrm{uw} / 2 R (T_\mathrm{leaf} + T_\mathrm{air}) / 2
Note that the stomatal and cuticular conductances are given in units of (\mu
mol H2O) / (m^2
s Pa) (see make_leafpar
) and converted to m/s using the ideal gas law. The total leaf stomatal (g_\mathrm{sw}
) and cuticular (g_\mathrm{uw}
) conductances are partitioned across lower and upper surfaces. The stomatal conductance on each surface depends on stomatal ratio (sr); the cuticular conductance is assumed identical on both surfaces.
Symbol | R | Description | Units | Default |
g_\mathrm{sw} | g_sw | stomatal conductance to H2O | (\mu mol H2O) / (m^2 s Pa) | 5 |
g_\mathrm{uw} | g_uw | cuticular conductance to H2O | (\mu mol H2O) / (m^2 s Pa) | 0.1 |
R | R | ideal gas constant | J / (mol K) | 8.3144598 |
\mathrm{logit}(sr) | logit_sr | stomatal ratio (logit transformed) | none | 0 = logit(0.5) |
T_\mathrm{air} | T_air | air temperature | K | 298.15 |
T_\mathrm{leaf} | T_leaf | leaf temperature | K | input |
Value
Value in m/s of class units
Examples
# Total conductance to water vapor
## Hypostomatous leaf; default parameters
leaf_par <- make_leafpar(replace = list(logit_sr = set_units(-Inf)))
enviro_par <- make_enviropar()
constants <- make_constants()
pars <- c(leaf_par, enviro_par, constants)
T_leaf <- set_units(300, K)
## Fixing boundary layer conductance rather than calculating
gbw_lower <- set_units(0.1, m / s)
gbw_upper <- set_units(0.1, m / s)
# Lower surface ----
## Note that pars$logit_sr is logit-transformed! Use stats::plogis() to convert to proportion.
gsw_lower <- set_units(pars$g_sw * (set_units(1) - stats::plogis(pars$logit_sr)) * pars$R *
((T_leaf + pars$T_air) / 2), "m / s")
guw_lower <- set_units(pars$g_uw * 0.5 * pars$R * ((T_leaf + pars$T_air) / 2), m / s)
gtw_lower <- 1 / (1 / (gsw_lower + guw_lower) + 1 / gbw_lower)
# Upper surface ----
gsw_upper <- set_units(pars$g_sw * stats::plogis(pars$logit_sr) * pars$R *
((T_leaf + pars$T_air) / 2), m / s)
guw_upper <- set_units(pars$g_uw * 0.5 * pars$R * ((T_leaf + pars$T_air) / 2), m / s)
gtw_upper <- 1 / (1 / (gsw_upper + guw_upper) + 1 / gbw_upper)
## Lower and upper surface are in parallel
g_tw <- gtw_lower + gtw_upper