.get_gtw {tealeaves}R Documentation

g_tw: total conductance to water vapour (m/s)

Description

g_tw: total conductance to water vapour (m/s)

Usage

.get_gtw(T_leaf, pars, unitless)

Arguments

T_leaf

Leaf temperature in Kelvin

pars

Concatenated parameters (leaf_par, enviro_par, and constants)

unitless

Logical. Should function use parameters with units? The function is faster when FALSE, but input must be in correct units or else results will be incorrect without any warning.

Details

Total conductance to water vapor: The total conductance to water vapor (g_\mathrm{tw}) is the sum of the parallel lower (abaxial) and upper (adaxial) conductances:

g_\mathrm{tw} = g_\mathrm{w,lower} + g_\mathrm{w,upper}

The conductance to water vapor on each surface is a function of parallel stomatal (g_\mathrm{sw}) and cuticular (g_\mathrm{uw}) conductances in series with the boundary layer conductance (g_\mathrm{bw}). The stomatal, cuticular, and boundary layer conductance on the lower surface are:

g_\mathrm{sw,lower} = g_\mathrm{sw} (1 - sr) R (T_\mathrm{leaf} + T_\mathrm{air}) / 2

g_\mathrm{uw,lower} = g_\mathrm{uw} / 2 R (T_\mathrm{leaf} + T_\mathrm{air}) / 2


See .get_gbw for details on calculating boundary layer conductance. The equations for the upper surface are:

g_\mathrm{sw,upper} = g_\mathrm{sw} sr R (T_\mathrm{leaf} + T_\mathrm{air}) / 2

g_\mathrm{uw,upper} = g_\mathrm{uw} / 2 R (T_\mathrm{leaf} + T_\mathrm{air}) / 2


Note that the stomatal and cuticular conductances are given in units of (\mumol H2O) / (m^2 s Pa) (see make_leafpar) and converted to m/s using the ideal gas law. The total leaf stomatal (g_\mathrm{sw}) and cuticular (g_\mathrm{uw}) conductances are partitioned across lower and upper surfaces. The stomatal conductance on each surface depends on stomatal ratio (sr); the cuticular conductance is assumed identical on both surfaces.

Symbol R Description Units Default
g_\mathrm{sw} g_sw stomatal conductance to H2O (\mumol H2O) / (m^2 s Pa) 5
g_\mathrm{uw} g_uw cuticular conductance to H2O (\mumol H2O) / (m^2 s Pa) 0.1
R R ideal gas constant J / (mol K) 8.3144598
\mathrm{logit}(sr) logit_sr stomatal ratio (logit transformed) none 0 = logit(0.5)
T_\mathrm{air} T_air air temperature K 298.15
T_\mathrm{leaf} T_leaf leaf temperature K input

Value

Value in m/s of class units

Examples


# Total conductance to water vapor

## Hypostomatous leaf; default parameters
leaf_par <- make_leafpar(replace = list(logit_sr = set_units(-Inf)))
enviro_par <- make_enviropar()
constants <- make_constants()
pars <- c(leaf_par, enviro_par, constants)
T_leaf <- set_units(300, K)

## Fixing boundary layer conductance rather than calculating
gbw_lower <- set_units(0.1, m / s)
gbw_upper <- set_units(0.1, m / s)

# Lower surface ----
## Note that pars$logit_sr is logit-transformed! Use stats::plogis() to convert to proportion.
gsw_lower <- set_units(pars$g_sw * (set_units(1) - stats::plogis(pars$logit_sr)) * pars$R * 
                         ((T_leaf + pars$T_air) / 2), "m / s")
guw_lower <- set_units(pars$g_uw * 0.5 * pars$R * ((T_leaf + pars$T_air) / 2), m / s)
gtw_lower <- 1 / (1 / (gsw_lower + guw_lower) + 1 / gbw_lower)

# Upper surface ----
gsw_upper <- set_units(pars$g_sw * stats::plogis(pars$logit_sr) * pars$R * 
                         ((T_leaf + pars$T_air) / 2), m / s)
guw_upper <- set_units(pars$g_uw * 0.5 * pars$R * ((T_leaf + pars$T_air) / 2), m / s)
gtw_upper <- 1 / (1 / (gsw_upper + guw_upper) + 1 / gbw_upper)

## Lower and upper surface are in parallel
g_tw <- gtw_lower + gtw_upper


[Package tealeaves version 1.0.6 Index]