data_extract_srv {teal.transform} | R Documentation |
Extraction of the selector(s) details
Description
Extracting details of the selection(s) in data_extract_ui elements.
Usage
data_extract_srv(id, datasets, data_extract_spec, ...)
## S3 method for class 'FilteredData'
data_extract_srv(id, datasets, data_extract_spec, ...)
## S3 method for class 'list'
data_extract_srv(
id,
datasets,
data_extract_spec,
join_keys = NULL,
select_validation_rule = NULL,
filter_validation_rule = NULL,
dataset_validation_rule = if (is.null(select_validation_rule) &&
is.null(filter_validation_rule)) {
NULL
} else {
shinyvalidate::sv_required("Please select a dataset")
},
...
)
Arguments
id |
An ID string that corresponds with the ID used to call the module's UI function. |
datasets |
( |
data_extract_spec |
( |
... |
An additional argument |
join_keys |
( |
select_validation_rule |
( You can use a validation function directly (i.e.
If |
filter_validation_rule |
( |
dataset_validation_rule |
( |
Value
A reactive list
containing following fields:
-
filters
: A list with the information on the filters that are applied to the data set. -
select
: The variables that are selected from the dataset. -
always_selected
: The column names from the data set that should always be selected. -
reshape
: Whether reshape long to wide should be applied or not. -
dataname
: The name of the data set. -
internal_id
: Theid
of the corresponding shiny input element. -
keys
: The names of the columns that can be used to merge the data set. -
iv
: Ashinyvalidate::InputValidator
containingvalidator
for thisdata_extract
.
References
Examples
library(shiny)
library(shinyvalidate)
library(teal.data)
library(teal.widgets)
# Sample ADSL dataset
ADSL <- data.frame(
STUDYID = "A",
USUBJID = LETTERS[1:10],
SEX = rep(c("F", "M"), 5),
AGE = rpois(10, 30),
BMRKR1 = rlnorm(10)
)
# Specification for data extraction
adsl_extract <- data_extract_spec(
dataname = "ADSL",
filter = filter_spec(vars = "SEX", choices = c("F", "M"), selected = "F"),
select = select_spec(
label = "Select variable:",
choices = variable_choices(ADSL, c("AGE", "BMRKR1")),
selected = "AGE",
multiple = TRUE,
fixed = FALSE
)
)
# Using reactive list of data.frames
data_list <- list(ADSL = reactive(ADSL))
join_keys <- join_keys(join_key("ADSL", "ADSL", c("STUDYID", "USUBJID")))
# App: data extraction with validation
ui <- fluidPage(
standard_layout(
output = verbatimTextOutput("out1"),
encoding = tagList(
data_extract_ui(
id = "adsl_var",
label = "ADSL selection",
data_extract_spec = adsl_extract
)
)
)
)
server <- function(input, output, session) {
adsl_reactive_input <- data_extract_srv(
id = "adsl_var",
datasets = data_list,
data_extract_spec = adsl_extract,
join_keys = join_keys,
select_validation_rule = sv_required("Please select a variable.")
)
iv_r <- reactive({
iv <- InputValidator$new()
iv$add_validator(adsl_reactive_input()$iv)
iv$enable()
iv
})
output$out1 <- renderPrint({
if (iv_r()$is_valid()) {
cat(format_data_extract(adsl_reactive_input()))
} else {
"Please fix errors in your selection"
}
})
}
if (interactive()) {
shinyApp(ui, server)
}
# App: simplified data extraction
ui <- fluidPage(
standard_layout(
output = verbatimTextOutput("out1"),
encoding = tagList(
data_extract_ui(
id = "adsl_var",
label = "ADSL selection",
data_extract_spec = adsl_extract
)
)
)
)
server <- function(input, output, session) {
adsl_reactive_input <- data_extract_srv(
id = "adsl_var",
datasets = data_list,
data_extract_spec = adsl_extract
)
output$out1 <- renderPrint(adsl_reactive_input())
}
if (interactive()) {
shinyApp(ui, server)
}