tm_outliers {teal.modules.general} | R Documentation |
teal
module: Outliers analysis
Description
Module to analyze and identify outliers using different methods such as IQR, Z-score, and Percentiles, and offers visualizations including box plots, density plots, and cumulative distribution plots to help interpret the outliers.
Usage
tm_outliers(
label = "Outliers Module",
outlier_var,
categorical_var = NULL,
ggtheme = c("gray", "bw", "linedraw", "light", "dark", "minimal", "classic", "void"),
ggplot2_args = teal.widgets::ggplot2_args(),
plot_height = c(600, 200, 2000),
plot_width = NULL,
pre_output = NULL,
post_output = NULL
)
Arguments
label |
( |
outlier_var |
( |
categorical_var |
( |
ggtheme |
( |
ggplot2_args |
( List names should match the following: For more details see the vignette: |
plot_height |
( |
plot_width |
( |
pre_output |
( |
post_output |
( |
Value
Object of class teal_module
to be used in teal
applications.
Examples
library(teal.widgets)
# general data example
data <- teal_data()
data <- within(data, {
CO2 <- CO2
CO2[["primary_key"]] <- seq_len(nrow(CO2))
})
datanames(data) <- "CO2"
join_keys(data) <- join_keys(join_key("CO2", "CO2", "primary_key"))
vars <- choices_selected(variable_choices(data[["CO2"]], c("Plant", "Type", "Treatment")))
app <- init(
data = data,
modules = modules(
tm_outliers(
outlier_var = list(
data_extract_spec(
dataname = "CO2",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["CO2"]], c("conc", "uptake")),
selected = "uptake",
multiple = FALSE,
fixed = FALSE
)
)
),
categorical_var = list(
data_extract_spec(
dataname = "CO2",
filter = filter_spec(
vars = vars,
choices = value_choices(data[["CO2"]], vars$selected),
selected = value_choices(data[["CO2"]], vars$selected),
multiple = TRUE
)
)
),
ggplot2_args = list(
ggplot2_args(
labs = list(subtitle = "Plot generated by Outliers Module")
)
)
)
)
)
if (interactive()) {
shinyApp(app$ui, app$server)
}
# CDISC data example
data <- teal_data()
data <- within(data, {
ADSL <- rADSL
})
datanames(data) <- "ADSL"
join_keys(data) <- default_cdisc_join_keys[datanames(data)]
fact_vars_adsl <- names(Filter(isTRUE, sapply(data[["ADSL"]], is.factor)))
vars <- choices_selected(variable_choices(data[["ADSL"]], fact_vars_adsl))
app <- init(
data = data,
modules = modules(
tm_outliers(
outlier_var = list(
data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]], c("AGE", "BMRKR1")),
selected = "AGE",
multiple = FALSE,
fixed = FALSE
)
)
),
categorical_var = list(
data_extract_spec(
dataname = "ADSL",
filter = filter_spec(
vars = vars,
choices = value_choices(data[["ADSL"]], vars$selected),
selected = value_choices(data[["ADSL"]], vars$selected),
multiple = TRUE
)
)
),
ggplot2_args = list(
ggplot2_args(
labs = list(subtitle = "Plot generated by Outliers Module")
)
)
)
)
)
if (interactive()) {
shinyApp(app$ui, app$server)
}