| tm_a_regression {teal.modules.general} | R Documentation | 
teal module: Scatterplot and regression analysis
Description
Module for visualizing regression analysis, including scatterplots and various regression diagnostics plots. It allows users to explore the relationship between a set of regressors and a response variable, visualize residuals, and identify outliers.
Usage
tm_a_regression(
  label = "Regression Analysis",
  regressor,
  response,
  plot_height = c(600, 200, 2000),
  plot_width = NULL,
  alpha = c(1, 0, 1),
  size = c(2, 1, 8),
  ggtheme = c("gray", "bw", "linedraw", "light", "dark", "minimal", "classic", "void"),
  ggplot2_args = teal.widgets::ggplot2_args(),
  pre_output = NULL,
  post_output = NULL,
  default_plot_type = 1,
  default_outlier_label = "USUBJID",
  label_segment_threshold = c(0.5, 0, 10)
)
Arguments
| label | ( | 
| regressor | ( | 
| response | ( | 
| plot_height | ( | 
| plot_width | ( | 
| alpha | ( 
 | 
| size | ( 
 | 
| ggtheme | ( | 
| ggplot2_args | ( List names should match the following:  For more details see the vignette:  | 
| pre_output | ( | 
| post_output | ( | 
| default_plot_type | ( 
 | 
| default_outlier_label | ( | 
| label_segment_threshold | ( It can take the following forms: 
 | 
Value
Object of class teal_module to be used in teal applications.
Note
For more examples, please see the vignette "Using regression plots" via
vignette("using-regression-plots", package = "teal.modules.general").
Examples
# general data example
library(teal.widgets)
data <- teal_data()
data <- within(data, {
  require(nestcolor)
  CO2 <- CO2
})
datanames(data) <- c("CO2")
app <- init(
  data = data,
  modules = modules(
    tm_a_regression(
      label = "Regression",
      response = data_extract_spec(
        dataname = "CO2",
        select = select_spec(
          label = "Select variable:",
          choices = "uptake",
          selected = "uptake",
          multiple = FALSE,
          fixed = TRUE
        )
      ),
      regressor = data_extract_spec(
        dataname = "CO2",
        select = select_spec(
          label = "Select variables:",
          choices = variable_choices(data[["CO2"]], c("conc", "Treatment")),
          selected = "conc",
          multiple = TRUE,
          fixed = FALSE
        )
      ),
      ggplot2_args = ggplot2_args(
        labs = list(subtitle = "Plot generated by Regression Module")
      )
    )
  )
)
if (interactive()) {
  shinyApp(app$ui, app$server)
}
# CDISC data example
library(teal.widgets)
data <- teal_data()
data <- within(data, {
  require(nestcolor)
  ADSL <- rADSL
})
datanames(data) <- "ADSL"
join_keys(data) <- default_cdisc_join_keys[datanames(data)]
app <- init(
  data = data,
  modules = modules(
    tm_a_regression(
      label = "Regression",
      response = data_extract_spec(
        dataname = "ADSL",
        select = select_spec(
          label = "Select variable:",
          choices = "BMRKR1",
          selected = "BMRKR1",
          multiple = FALSE,
          fixed = TRUE
        )
      ),
      regressor = data_extract_spec(
        dataname = "ADSL",
        select = select_spec(
          label = "Select variables:",
          choices = variable_choices(data[["ADSL"]], c("AGE", "SEX", "RACE")),
          selected = "AGE",
          multiple = TRUE,
          fixed = FALSE
        )
      ),
      ggplot2_args = ggplot2_args(
        labs = list(subtitle = "Plot generated by Regression Module")
      )
    )
  )
)
if (interactive()) {
  shinyApp(app$ui, app$server)
}