gpd {tea} | R Documentation |
The Generalized Pareto Distribution (GPD)
Description
Density, distribution function, quantile function and random number generation for the Generalized Pareto distribution with location, scale, and shape parameters.
Usage
dgpd(x, loc = 0, scale = 1, shape = 0, log.d = FALSE)
rgpd(n, loc = 0, scale = 1, shape = 0)
qgpd(p, loc = 0, scale = 1, shape = 0, lower.tail = TRUE,
log.p = FALSE)
pgpd(q, loc = 0, scale = 1, shape = 0, lower.tail = TRUE,
log.p = FALSE)
Arguments
x |
Vector of observations. |
loc , scale , shape |
Location, scale, and shape parameters. Can be vectors, but the lengths must be appropriate. |
log.d |
Logical; if TRUE, the log density is returned. |
n |
Number of observations. |
p |
Vector of probabilities. |
lower.tail |
Logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
log.p |
Logical; if TRUE, probabilities p are given as log(p). |
q |
Vector of quantiles. |
Details
The Generalized Pareto distribution function is given (Pickands, 1975) by
H(y) = 1 - \Big[1 + \frac{\xi (y - \mu)}{\sigma}\Big]^{-1/\xi}
defined
on \{y : y > 0, (1 + \xi (y - \mu) / \sigma) > 0 \}
, with location \mu
,
scale \sigma > 0
, and shape parameter \xi
.
References
Brian Bader, Jun Yan. "eva: Extreme Value Analysis with Goodness-of-Fit Testing." R package version (2016)
Pickands III, J. (1975). Statistical inference using extreme order statistics. Annals of Statistics, 119-131.
Examples
dgpd(2:4, 1, 0.5, 0.01)
dgpd(2, -2:1, 0.5, 0.01)
pgpd(2:4, 1, 0.5, 0.01)
qgpd(seq(0.9, 0.6, -0.1), 2, 0.5, 0.01)
rgpd(6, 1, 0.5, 0.01)
## Generate sample with linear trend in location parameter
rgpd(6, 1:6, 0.5, 0.01)
## Generate sample with linear trend in location and scale parameter
rgpd(6, 1:6, seq(0.5, 3, 0.5), 0.01)
p <- (1:9)/10
pgpd(qgpd(p, 1, 2, 0.8), 1, 2, 0.8)
## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
## Incorrect syntax (parameter vectors are of different lengths other than 1)
# rgpd(1, 1:8, 1:5, 0)
## Also incorrect syntax
# rgpd(10, 1:8, 1, 0.01)