Tapkee {tapkee}R Documentation

Tapkee wrapper

Description

R wrapper for the 'tapkee' dimension reduction library

Usage

Tapkee(data, method="pca", td=2, verbose=FALSE, add="", prefix="Dim", rm=TRUE)

Arguments

data

R numerical matrix or data frame (will be converted into matrix)

method

'tapkee' method, run "system('tapkee -h')" for the list, default is "pca"

td

Number of dimensions to output, default is 2

verbose

If TRUE, 'tapkee' is verbose, defalut is FALSE

add

'tapkee' additional arguments as character string: see "system('tapkee -h')"

prefix

Variable name prefix in the resulted data frame, default is "Dim"

rm

Remove temp files (but temp folder will be removed anyway in the end of R session), default is TRUE

Details

Interface (wrapper) for the 'tapkee', flexible and efficient C++ template library for dimension reduction. 'tapkee' is extremely fast comparing with other DR tools.

For methods used in 'tapkee', run 'vignette(tapkee_methods)'.

Users should install 'tapkee' independently from author Web site (https://github.com/lisitsyn/tapkee) or associated GitHub (https://github.com/lisitsyn/tapkee). Run 'package?tapkee' or help("tapkee-package") for details related with your operation system. If 'tapkee' is not installed, Tapkee() will fail gracefully and output the input data with warning.

Please note that "[warning] The neighborhood graph is not connected" message in most cases means that 'tapkee' run was unsuccessful. As a result, Tapkee() might return the matrix of NaN's. One of possible workarounds is to specify the higher number of neigbors ('-k' option, default is 10). See below for the example.

Note that the wrapper catches only one (main) type of 'tapkee' utility outputs. For other possible output types (see 'tapkee -h' for explanation), run 'tapkee' without wrapper.

Value

Data frame with number of columns equal to number of dimensions given and "prefix" column names prefixes.

Author(s)

Alexey Shipunov

References

Sergey Lisitsyn and Christian Widmer and Fernando J. Iglesias Garcia. Tapkee: An Efficient Dimension Reduction Library. Journal of Machine Learning Research, 14: 2355-2359, 2013.

See Also

tapkee-package

Examples

## 'tapkee' vs. R base functions
system.time(Tapkee(iris[, -5], method="mds"))
system.time(cmdscale(dist(iris[, -5])))

## How to use 'add' option
plot(Tapkee(iris[, -5], "isomap", add="-k 47"), col=iris[, 5])

## 'tapkee' methods as of March 2019:
TM <- c(
"lle", # 1) locally_linear_embedding (lle),
"npe", # 2) neighborhood_preserving_embedding (npe),
"ltsa", # 3) local_tangent_space_alignment (ltsa),
"lltsa", # 4) linear_local_tangent_space_alignment (lltsa), 
"hlle", # 5) hessian_locally_linear_embedding (hlle),
"la", # 6) laplacian_eigenmaps (la),
"lpp", # 7) locality_preserving_projections (lpp),
"dm", # 8) diffusion_map (dm),
"isomap", # 9) isomap (isomap),
"l-isomap", # 10) landmark_isomap (l-isomap),
"mds", # 11) multidimensional_scaling (mds),
"l-mds", # 12) landmark_multidimensional_scaling (l-mds),
"spe", # 13) stochastic_proximity_embedding (spe),
"kpca", # 14) kernel_pca (kpca),
"pca", # 15) pca (pca),
"ra", # 16) random_projection (ra),
"fa", # 17) factor_analysis (fa),
"t-sne", # 18) t-stochastic_neighborhood_embedding (t-sne),
"ms") # 19) manifold_sculpting (ms)

## Iris example
oldpar <- par(mfrow=c(4, 5), mar=c(1, 1, 3, 1), xaxt="n", yaxt="n")
for (n in c(1:18)) {
plot(Tapkee(iris[, -5], method=TM[n], add="-k 50"),
 col=iris[, 5], pch=20, main=TM[n], xlab="", ylab="")
}
plot(iris[, 1:2], col=iris[, 5], pch=20, main="iris[, 1:2]", xlab="", ylab="")
par(oldpar)

## Generate typical 3D data
SR <- Gen.dr.data("swissroll")
SC <- Gen.dr.data("scurve")
HX <- Gen.dr.data("helix")
SS <- Gen.dr.data("ssphere")

## This will separate colors better
COL <- rainbow(1100)[1:1000]

## 3D plot (if no 'scatterplot3d' package, plots XY axes)
T3D <- function(dat, title, col=COL) {
 if (requireNamespace("scatterplot3d", quietly = TRUE)) {
 scatterplot3d::scatterplot3d(dat, color=col, main=title, pch=20, xlab="", ylab="", zlab="",
  axis=FALSE, tick.marks=FALSE, label.tick.marks=FALSE, mar=c(1, 1, 3, 1))
} else {
 plot(dat[, 1:2], col=col, main=paste(title, "(2D projection)"), pch=20)
 warning("Please install 'scatterplot3d' package to see the 3D plot")
}}

## Swiss Roll
oldpar <- par(mfrow=c(4, 5))
T3D(SR, title="Swiss Roll")
for (n in 1:18) plot(Tapkee(SR, method=TM[n]), col=COL, pch=20, main=TM[n],
 xlab="", ylab="", xaxt="n", yaxt="n")
par(oldpar)

## S-Curve
oldpar <- par(mfrow=c(4, 5))
T3D(SC, title="S-Curve")
for (n in 1:18) plot(Tapkee(SC, method=TM[n]), col=COL, pch=20, main=TM[n],
 xlab="", ylab="", xaxt="n", yaxt="n")
par(oldpar)

## Helix
oldpar <- par(mfrow=c(4, 5))
T3D(HX, title="Helix")
for (n in 1:18) plot(Tapkee(HX, method=TM[n]), col=COL, pch=20,
 main=TM[n], xlab="", ylab="", xaxt="n", yaxt="n")
par(oldpar)

## Severed Sphere
oldpar <- par(mfrow=c(4, 5))
T3D(SS, title="Severed Sphere", col=rainbow(nrow(SS)))
for (n in 1:18) plot(Tapkee(SS, method=TM[n]), col=rainbow(nrow(SS)), pch=20,
 main=TM[n], xlab="", ylab="", xaxt="n", yaxt="n")
par(oldpar)


[Package tapkee version 1.2 Index]