stdfEmpCorr {tailDepFun} | R Documentation |
Bias-corrected empirical stable tail dependence function
Description
Returns the bias-corrected stable tail dependence function in dimension d
, evaluated in a point cst
.
Usage
stdfEmpCorr(
ranks,
k,
cst = rep(1, ncol(ranks)),
tau = 5,
k1 = (nrow(ranks) - 10)
)
Arguments
ranks |
A |
k |
An integer between 1 and |
cst |
The value in which the tail dependence function is evaluated: defaults to |
tau |
The parameter of the power kernel. Defaults to 5. |
k1 |
An integer between 1 and |
Details
The values for k1
and tau
are chosen as recommended in Beirlant et al. (2016). This function might be slow for large n
.
Value
A scalar between \max(x_1,\ldots,x_d)
and x_1 + \cdots + x_d
.
References
Einmahl, J.H.J., Kiriliouk, A., and Segers, J. (2018). A continuous updating weighted least squares estimator of tail dependence in high dimensions. Extremes 21(2), 205-233.
Beirlant, J., Escobar-Bach, M., Goegebeur, Y., and Guillou, A. (2016). Bias-corrected estimation of stable tail dependence function. Journal of Multivariate Analysis, 143, 453-466.
See Also
Examples
## Simulate data from the Gumbel copula
set.seed(2)
cop <- copula::gumbelCopula(param = 2, dim = 4)
data <- copula::rCopula(n = 1000, copula = cop)
stdfEmpCorr(apply(data,2,rank), k = 50)