EstimationGumbel {tailDepFun} | R Documentation |
Estimation of the parameter of the Gumbel model
Description
Estimation the parameter of the Gumbel model, using either the pairwise M-estimator or weighted least squares (WLS).
Usage
EstimationGumbel(
x,
indices,
k,
method,
biascorr = FALSE,
k1 = (nrow(x) - 10),
tau = 5,
covMat = TRUE
)
Arguments
x |
An |
indices |
A |
k |
An integer between 1 and |
method |
Choose between |
biascorr |
For |
k1 |
For |
tau |
For |
covMat |
A Boolean variable. If |
Details
The matrix indices
can be either user defined or returned by selectGrid
. For method = "Mestimator"
, only a grid with exactly two ones per row is accepted, representing the pairs to be used.
Value
For WLS
, a list with the following components:
theta | The estimator with weight matrix identity. |
covMatrix | The estimated covariance matrix for the estimator. |
value | The value of the minimized function at theta . |
References
Einmahl, J.H.J., Kiriliouk, A., and Segers, J. (2018). A continuous updating weighted least squares estimator of tail dependence in high dimensions. Extremes 21(2), 205-233.
Einmahl, J.H.J., Kiriliouk, A., Krajina, A., and Segers, J. (2016). An Mestimator of spatial tail dependence. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78(1), 275-298.
See Also
Examples
## Generate data with theta = 0.5
set.seed(1)
n <- 1000
cop <- copula::gumbelCopula(param = 2, dim = 3)
data <- copula::rCopula(n = n,copula = cop)
## Transform data to unit Pareto margins
x <- apply(data, 2, function(i) n/(n + 0.5 - rank(i)))
## Define indices in which we evaluate the estimator
indices <- selectGrid(c(0,1), d = 3)
EstimationGumbel(x, indices, k = 50, method = "WLS", biascorr = TRUE)