tabgee {tab} | R Documentation |
Create Summary Table for Fitted Generalized Estimating Equation Model
Description
Creates a table summarizing a GEE fit using the gee
function.
Usage
tabgee(
fit,
data = NULL,
columns = NULL,
robust = TRUE,
var.labels = NULL,
factor.compression = 1,
sep.char = ", ",
decimals = 2,
formatp.list = NULL
)
Arguments
fit |
Fitted |
data |
Data frame that served as 'data' in function call to
|
columns |
Character vector specifying what columns to include. Choices
for each element are |
robust |
Logical value for whether to use robust standard errors. |
var.labels |
Named list specifying labels to use for certain predictors.
For example, if |
factor.compression |
Integer value from 1 to 5 controlling how much compression is applied to factor predictors (higher value = more compression). If 1, rows are Variable, Level 1 (ref), Level 2, ...; if 2, rows are Variable (ref = Level 1), Level 2, ...; if 3, rows are Level 1 (ref), Level 2, ...; if 4, rows are Level 2 (ref = Level 1), ...; if 5, rows are Level 2, ... |
sep.char |
Character string with separator to place between lower and
upper bound of confidence intervals. Typically |
decimals |
Numeric value specifying number of decimal places for numbers other than p-values. |
formatp.list |
List of arguments to pass to |
Value
Examples
# Load in sample dataset and convert to long format
tabdata2 <- reshape(data = tabdata,
varying = c("bp.1", "bp.2", "bp.3", "highbp.1",
"highbp.2", "highbp.3"),
timevar = "bp.visit", direction = "long")
tabdata2 <- tabdata2[order(tabdata2$id), ]
# Blood pressure at 1, 2, and 3 months vs. age, sex, race, and treatment
library("gee")
fit <- gee(bp ~ Age + Sex + Race + Group, id = id, data = tabdata2,
corstr = "unstructured")
tabgee(fit)
# Can also use piping
fit %>% tabgee(data = tabdata2)
# Same as previous, but with custom labels for Age and Race and factors
# displayed in slightly more compressed format
fit %>%
tabgee(
data = tabdata2,
var.labels = list(Age = "Age (years)", Race = "Race/ethnicity"),
factor.compression = 2
)
# GEE with some higher-order terms
# higher-order terms
fit <- gee(
highbp ~ poly(Age, 2, raw = TRUE) + Sex + Race + Group + Race*Group,
id = id,
data = tabdata2,
family = "binomial",
corstr = "unstructured"
)
fit %>% tabgee(data = tabdata2)