rarx {sysid} | R Documentation |
Estimate parameters of ARX recursively
Description
Estimates the parameters of a single-output ARX model of the specified order from data using the recursive weighted least-squares algorithm.
Usage
rarx(x, order = c(1, 1, 1), lambda = 0.95)
Arguments
x |
an object of class |
order |
Specification of the orders: the three integer components (na,nb,nk) are the order of polynolnomial A, (order of polynomial B + 1) and the input-output delay |
lambda |
Forgetting factor(Default= |
Value
A list containing the following objects
- theta
Estimated parameters of the model. The
k^{th}
row contains the parameters associated with thek^{th}
sample. Each row intheta
has the following format:
theta[i,:]=[a1,a2,...,ana,b1,...bnb]- yhat
Predicted value of the output, according to the current model - parameters based on all past data
References
Arun K. Tangirala (2015), Principles of System Identification: Theory and Practice, CRC Press, Boca Raton. Section 25.1.3
Lennart Ljung (1999), System Identification: Theory for the User, 2nd Edition, Prentice Hall, New York. Section 11.2
Examples
Gp1 <- idpoly(c(1,-0.9,0.2),2,ioDelay=2,noiseVar = 0.1)
Gp2 <- idpoly(c(1,-1.2,0.35),2.5,ioDelay=2,noiseVar = 0.1)
uk = idinput(2044,'prbs',c(0,1/4)); N = length(uk);
N1 = round(0.35*N); N2 = round(0.4*N); N3 = N-N1-N2;
yk1 <- sim(Gp1,uk[1:N1],addNoise = TRUE)
yk2 <- sim(Gp2,uk[N1+1:N2],addNoise = TRUE)
yk3 <- sim(Gp1,uk[N1+N2+1:N3],addNoise = TRUE)
yk <- c(yk1,yk2,yk3)
z <- idframe(yk,uk,1)
g(theta,yhat) %=% rarx(z,c(2,1,2))