idpoly {sysid} | R Documentation |
Polynomial model with identifiable parameters
Description
Creates a polynomial model with identifiable coefficients
Usage
idpoly(A = 1, B = 1, C = 1, D = 1, F1 = 1, ioDelay = 0, Ts = 1,
noiseVar = 1, intNoise = F, unit = c("seconds", "minutes", "hours",
"days")[1])
Arguments
A |
autoregressive coefficients |
B , F1 |
coefficients of the numerator and denominator respectively of the deterministic model between the input and output |
C , D |
coefficients of the numerator and denominator respectively of the stochastic model |
ioDelay |
the delay in the input-output channel |
Ts |
sampling interval |
noiseVar |
variance of the white noise source (Default= |
intNoise |
Logical variable indicating presence or absence of integrator
in the noise channel (Default= |
unit |
time unit (Default= |
Details
Discrete-time polynomials are of the form
A(q^{-1}) y[k] = \frac{B(q^{-1})}{F1(q^{-1})} u[k] +
\frac{C(q^{-1})}{D(q^{-1})} e[k]
Examples
# define output-error model
mod_oe <- idpoly(B=c(0.6,-0.2),F1=c(1,-0.5),ioDelay = 2,Ts=0.1,
noiseVar = 0.1)
# define box-jenkins model with unit variance
B <- c(0.6,-0.2)
C <- c(1,-0.3)
D <- c(1,1.5,0.7)
F1 <- c(1,-0.5)
mod_bj <- idpoly(1,B,C,D,F1,ioDelay=1)
[Package sysid version 1.0.4 Index]