data.gen.tar {synthesis} | R Documentation |
Generate a two-regime threshold autoregressive (TAR) process.
Description
Generate a two-regime threshold autoregressive (TAR) process.
Usage
data.gen.tar(
nobs,
ndim = 9,
phi1 = c(0.6, -0.1),
phi2 = c(-1.1, 0),
theta = 0,
d = 2,
p = 2,
noise = 0.1
)
Arguments
nobs |
the data length to be generated |
ndim |
The number of potential predictors (default is 9) |
phi1 |
the coefficient vector of the lower-regime model |
phi2 |
the coefficient vector of the upper-regime model |
theta |
threshold |
d |
delay |
p |
maximum autoregressive order |
noise |
the white noise in the data |
Details
The two-regime Threshold Autoregressive (TAR) model is given by the following formula:
Y_t = \phi_{1,0}+\phi_{1,1} Y_{t-1} +\ldots+ \phi_{1,p} Y_{t-p}+\sigma_1 e_t, \mbox{ if } Y_{t-d}\le r
Y_t = \phi_{2,0}+\phi_{2,1} Y_{t-1} +\ldots+ \phi_{2,p} Y_{t-p}+\sigma_2 e_t, \mbox{ if } Y_{t-d} > r.
where r is the threshold and d the delay.
Value
A list of 2 elements: a vector of response (x), and a matrix of potential predictors (dp) with each column containing one potential predictor.
References
Cryer, J. D. and K.-S. Chan (2008). Time Series Analysis With Applications in R Second Edition Springer Science+ Business Media, LLC.
Examples
# TAR2 model from paper with total 9 dimensions
data.tar<-data.gen.tar(500)
plot.ts(cbind(data.tar$x,data.tar$dp))