data.gen.Lorenz {synthesis} | R Documentation |
Lorenz system
Description
Generates a 3-dimensional time series using the Lorenz equations.
Usage
data.gen.Lorenz(
sigma = 10,
beta = 8/3,
rho = 28,
start = c(-13, -14, 47),
time = seq(0, 50, length.out = 1000),
s
)
Arguments
sigma |
The |
beta |
The |
rho |
The |
start |
A 3-dimensional numeric vector indicating the starting point for the time series. Default: c(-13, -14, 47). |
time |
The temporal interval at which the system will be generated. Default: time=seq(0,50,by = 0.01). |
s |
The level of noise, default 0. |
Details
The Lorenz system is a system of ordinary differential equations defined as:
\dot{x} = \sigma(y-x)
\dot{y} = \rho x-y-xz
\dot{z} = -\beta z + xy
The default selection for the system parameters (\sigma=10, \rho=28, \beta=8/3
) is known to
produce a deterministic chaotic time series.
Value
A list with four vectors named time, x, y and z containing the time, the x-components, the y-components and the z-components of the Lorenz system, respectively.
Note
Some initial values may lead to an unstable system that will tend to infinity.
References
Constantino A. Garcia (2019). nonlinearTseries: Nonlinear Time Series Analysis. R package version 0.2.7. https://CRAN.R-project.org/package=nonlinearTseries
Examples
###Synthetic example - Lorenz
ts.l <- data.gen.Lorenz(sigma = 10, beta = 8/3, rho = 28, start = c(-13, -14, 47),
time = seq(0, by=0.05, length.out = 2000))
ts.plot(cbind(ts.l$x,ts.l$y,ts.l$z), col=c('black','red','blue'))