multipleSyn {synMicrodata} | R Documentation |
Generate synthetic micro datasets
Description
Generate synthetic micro datasets using a hierarchically coupled mixture model with local dependence (HCMM-LC).
Usage
multipleSyn(data_obj, model_obj, n_burnin, m, interval_btw_Syn, show_iter = TRUE)
## S3 method for class 'synMicro_object'
print(x, ...)
Arguments
data_obj |
data object produced by |
model_obj |
model object produced by |
n_burnin |
size of burn-in. |
m |
number of synthetic micro datasets to be generated. |
interval_btw_Syn |
interval between MCMC iterations for generating synthetic micro datasets. |
show_iter |
logical value. If |
x |
object of class |
... |
further arguments passed to or from other methods. |
Value
multipleSyn
returns a list of the following conmponents:
synt_data |
list of |
comp_mat |
list of matrices of the mixture component indices. |
orig_data |
original dataset. |
References
Murray, J. S. and Reiter, J. P. (2016). Multiple imputation of missing categorical and continuous values via Bayesian mixture models with local dependence. Journal of the American Statistical Association, 111(516), pp.1466-1479.
See Also
readData
, createModel
, plot.synMicro_object
Examples
## preparing to generate synthetic datsets
dat_obj <- readData(Y_input = iris[,1:4],
X_input = data.frame(Species = iris[,5]))
mod_obj <- createModel(dat_obj, max_R_S_K=c(30,50,20))
## generating synthetic datasets
res_obj <- multipleSyn(dat_obj, mod_obj, n_burnin = 100, m = 5,
interval_btw_Syn = 50, show_iter = FALSE)
print(res_obj)