Rcpp_modelobject-class {synMicrodata} | R Documentation |
Class "Rcpp_modelobject"
Description
This class implements a joint modeling approach to generate synthetic microdata with continuous and categorical variables with possibly missing values. The method builds on the work of Murray and Reiter (2016)
Details
Rcpp_modelobject should be created with createModel
. Please see the example below.
Extends
Class "C++Object"
, directly.
Fields
-
data_obj
input dataset generated fromreadData
.
Methods
-
multipleSyn
generates synthetic micro datasets.
References
Murray, J. S. and Reiter, J. P. (2016). Multiple imputation of missing categorical and continuous values via Bayesian mixture models with local dependence. Journal of the American Statistical Association, 111(516), pp.1466-1479.
Examples
## preparing to generate synthetic datsets
dat_obj <- readData(Y_input = iris[,1:4],
X_input = data.frame(Species = iris[,5]))
mod_obj <- createModel(dat_obj, max_R_S_K=c(30,50,20))
## generating synthetic datasets
res_obj <- multipleSyn(dat_obj, mod_obj, n_burnin = 100, m = 5,
interval_btw_Syn = 50, show_iter = FALSE)
print(res_obj)
[Package synMicrodata version 2.0.0 Index]