influence {sym.arma} | R Documentation |
Assessment of local influence in SYMARMA models
Description
This function discusses local influence analysis in SYMARMA models with Student-t and Gaussian distributions through Billor and Loyne's slope, Cook's curvature and Lesaffre and Verbeke's curvature using the methodology of benchmarks proposed by Zhang and King. Although this function is concerned primarily with local influence, some discussion of assessing global influence is presented.
Usage
influence(model, diag="slope", scheme="additive",iter=2000,
alpha=0.95, theta=0.05, plot="TRUE")
Arguments
model |
a result of a call to |
diag |
a description of the diagnostic method: “slope” for Billor and Loyne's, “cook” for Cook's and “lv” for Lesaffre and Verbeke's. The default is to slope. |
scheme |
a description of the perturbation scheme: “additive” for data additive perturbation and “dispersion” for dispersion parameter perturbation. The default is to additive. |
iter |
integer giving the number of iterations for construction of benckmarks. Default is 2,000 iterations. |
alpha |
percentile for benchmarks in assessing global influence (BS_0 and BC_0) and first assessing local influence (BS_1 and BC_1), e.g., 0.95. |
theta |
percentile for benchmarks in assessing global influence second assessing local influence (BS_2 and BC_2), e.g., 0.05. |
plot |
a logical indicating if plot should be produced. |
Value
Indiv1 |
individual benchmark type I. |
Indiv2 |
individual benchmark type II. |
VectorInd |
slope or curvature vector. |
Author(s)
Vinicius Quintas Souto Maior and Francisco Jose A. Cysneiros
Maintainer: Vinicius Quintas Souto Maior <vinicius@de.ufpe.br>
References
Cook, R.D. (1986). Assessment of local influence (with discussion). Journal of the Royal Statistical Society, B 48, 133-169.
Billor, N. and Loynes, R.M. (1993). Local influence: A new approach. Communications in Statistics Theory and Methods, 22, 1595-1611. doi: 10.1080/03610929308831105.
Lesaffre, F. and Verbeke, G. (1998). Local influence in linear mixed models. Biometrics, 38, 963-974. doi: 10.2307/3109764.
Zhang, X. and King, M.L. (2005). Influence diagnostics in generalized autoregressive conditional heteroscedasticity processes. J. Business Econ. Statist., 23, 118-129. doi: 10.1198/073500104000 000217.
Examples
data(assets)
attach(assets)
# Return in the prices on Microsoft and SP500 index
N = length(msf)
.sp500 = ((sp500[2:N]-sp500[1:(N-1)])/sp500[1:(N-1)])*100
.msf = ((msf[2:N]-msf[1:(N-1)])/msf[1:(N-1)])*100
# The T-bill rates were divided by 253 to convert to a daily rate
.tbill = tbill/253
# Excess return in the d prices on Microsoft and SP500 index
Y = .msf - .tbill[1:(N-1)]
X = .sp500 - .tbill[1:(N-1)]
# Period from April 4, 2002 to October 4, 2002
serie = Y[2122:2240]
aux = cbind(X[2122:2240])
# Fit SYMARMA models
fit.1 = elliptical.ts(serie,order=c(0,0,1),xreg=aux,include.mean=FALSE,
family="Normal")
fit.2 = elliptical.ts(serie,order=c(0,0,1),xreg=aux,include.mean=FALSE,
family="Student", index1=4)
# Assessment of local influence
influence(fit.1,diag="slope",scheme="additive",iter=20,plot="FALSE")
influence(fit.2,diag="lv",scheme="additive",iter=20,plot="FALSE")