| affin.prop {swfscMisc} | R Documentation | 
Affinity Propagation
Description
Runs the Affinity Propagation clustering algorithm of Frey and Dueck, 2007.
Usage
affin.prop(
  sim.mat,
  num.iter = 100,
  stable.iter = 10,
  shared.pref = "min",
  lambda = 0.5
)
Arguments
| sim.mat | a similarity matrix between individuals to be clustered. | 
| num.iter | maximum number of iterations to attempt. | 
| stable.iter | number of sequential iterations for which consistent clustering is considered acceptable. | 
| shared.pref | type of shared preference to use. Can be one of "min", "median", or a numeric value. | 
| lambda | damping factor. | 
Value
A matrix with one row per sample in 'sim.mat' and one column for each iteration. Values in columns indicate cluster assignment (arbitrary numbers) for each sample.
Author(s)
Eric Archer eric.archer@noaa.gov
References
Frey, B.J., and D. Dueck. 2007. Clustering by passing messages between data points. Science 315:972-976
Examples
data(iris)
# Take 75 random iris rows for example
iris <- iris[sample(1:nrow(iris), 75), ]
iris <- droplevels(iris)
iris.sim <- -dist(iris[, -5])
iris.affin <- affin.prop(iris.sim, stable.iter = 5)
table(iris$Species, iris.affin[, ncol(iris.affin)])
[Package swfscMisc version 1.6.5 Index]