| tidiers_nnetar {sweep} | R Documentation |
Tidying methods for Nural Network Time Series models
Description
These methods tidy the coefficients of NNETAR models of univariate time series.
Usage
## S3 method for class 'nnetar'
sw_tidy(x, ...)
## S3 method for class 'nnetar'
sw_glance(x, ...)
## S3 method for class 'nnetar'
sw_augment(x, data = NULL, timetk_idx = FALSE, rename_index = "index", ...)
Arguments
x |
An object of class "nnetar" |
... |
Additional parameters (not used) |
data |
Used with |
timetk_idx |
Used with |
rename_index |
Used with |
Value
sw_tidy() returns one row for each model parameter,
with two columns:
-
term: The smoothing parameters (alpha, gamma) and the initial states (l, s0 through s10) -
estimate: The estimated parameter value
sw_glance() returns one row with the columns
-
model.desc: A description of the model including the three integer components (p, d, q) are the AR order, the degree of differencing, and the MA order. -
sigma: The square root of the estimated residual variance -
logLik: The data's log-likelihood under the model (NA) -
AIC: The Akaike Information Criterion (NA) -
BIC: The Bayesian Information Criterion (NA) -
ME: Mean error -
RMSE: Root mean squared error -
MAE: Mean absolute error -
MPE: Mean percentage error -
MAPE: Mean absolute percentage error -
MASE: Mean absolute scaled error -
ACF1: Autocorrelation of errors at lag 1
sw_augment() returns a tibble with the following time series attributes:
-
index: An index is either attempted to be extracted from the model or a sequential index is created for plotting purposes -
.actual: The original time series -
.fitted: The fitted values from the model -
.resid: The residual values from the model
See Also
Examples
library(dplyr)
library(forecast)
library(sweep)
fit_nnetar <- lynx %>%
nnetar()
sw_tidy(fit_nnetar)
sw_glance(fit_nnetar)
sw_augment(fit_nnetar)