| pairwise_metrics {swaRmverse} | R Documentation | 
Pairwise Metrics of Collective Motion in a Dataset
Description
This function calculates the bearing angle and distance from each focal individual of a group to its nearest neighbor over time, across the sets of a dataset.
Usage
pairwise_metrics(
  data_list,
  geo = FALSE,
  verbose = FALSE,
  parallelize = FALSE,
  add_coords = FALSE
)
Arguments
| data_list | A list of dataframes with groups timeseries per set.
Columns must include:  | 
| geo | Logical, whether positions are geographic coordinates, default = FALSE. | 
| verbose | Logical, whether to post updates on progress, default = FALSE. | 
| parallelize | Logical, whether to run the function in parallel over timesteps, default = FALSE. | 
| add_coords | Logical, whether data on relative positions are converted into geographic coordinates, default = 'FALSE'. | 
Value
A dataframe format of the input list, with new columns for nearest neighbor id (nn_id),
bearing angles (bangl), and distances (nnd). If add_coords is TRUE, the columns
nnx and nny are also added.
Author(s)
Marina Papadopoulou m.papadopoulou.rug@gmail.com
See Also
nn_metrics, group_metrics_per_set
Examples
data <- data.frame(
 set = rep("1", 50),
 t = as.POSIXct(rep(1:25, 2), origin = Sys.time()),
 id = c(rep(1, 25), rep(2, 25)),
 x = rnorm(50),
 y = rnorm(50),
 head = runif(50, 0, 2 * pi)
 )
pm <- pairwise_metrics(list(data), geo = FALSE)