fast_nmf {svs} | R Documentation |
Non-negative Matrix Factorization
Description
A fast procedure for non-negative matrix factorization.
Usage
fast_nmf(dat, k, type = "KL", tol = 1e-08)
fast_nmf_KL(dat, k, tol = 1e-08)
fast_nmf_Fr(dat, k, tol = 1e-08)
fast_nmf_Al(dat, k, tol = 1e-08)
Arguments
dat |
Input data: can be a table or a data frame (but the data frame must have only two columns). |
k |
Numeric specification of the number of latent axes to compute. |
type |
Character specification of the type of optimization: can in the current implementation be either |
tol |
Numeric specification of the convergence criterion. |
Value
A list with components:
pos1 |
The coordinates of the first set of levels (viz. the row levels of a frequency table). |
pos2 |
The coordinates of the second set of levels (viz. the column levels of a frequency table). |
References
Lee, D. D. and H. S. Seung (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791.
Lee, D. D. and H. S. Seung (2001) Algorithms for non-negative matrix factorization. Advances in neural information processing systems 13, 556–562.
Examples
SndT_Fra <- read.table(system.file("extdata", "SndT_Fra.txt", package = "svs"),
header = TRUE, sep = "\t", quote = "\"", encoding = "UTF-8",
stringsAsFactors = FALSE)
nmf_SndT_Fra <- fast_nmf(SndT_Fra, k = 7)
nmf_SndT_Fra