fast_lsa {svs} | R Documentation |
Latent Semantic Analysis
Description
A fast procedure for computing latent semantic analysis.
Usage
fast_lsa(dat, local_weights = "log", global_weights = "idf")
fast_lsi(dat, local_weights = "log", global_weights = "idf")
Arguments
dat |
Input data: can be a table or a data frame (but the data frame must have only two columns). |
local_weights |
Character specification of the local weighting function (without a prefix): see Weighting functions. |
global_weights |
Character specification of the global weighting function (without a prefix): see Weighting functions. |
Value
A list with components:
val |
The singular values, indicating how much each latent axis explains. |
pos1 |
The coordinates of the first set of levels (viz. the row levels of a frequency table). |
pos2 |
The coordinates of the second set of levels (viz. the column levels of a frequency table). |
References
Deerwester, S., S. T. Dumais, G. W. Furnas, Th. K. Landauer and R. Harshman (1990) Indexing by latent semantic analysis. Journal of the American society for information science 41 (6), 391–407.
Landauer, Th. K. and S. T. Dumais (1997) A solution to Plato's problem: the latent semantic analysis theory of the acquisition, induction, and representation of knowledge. Psychological review 104, 211–240.
Examples
SndT_Fra <- read.table(system.file("extdata", "SndT_Fra.txt", package = "svs"),
header = TRUE, sep = "\t", quote = "\"", encoding = "UTF-8",
stringsAsFactors = FALSE)
lsa_SndT_Fra <- fast_lsa(SndT_Fra)
lsa_SndT_Fra