fast_dca {svs} | R Documentation |
Discriminant Correspondence Analysis
Description
A fast procedure for computing discriminant correspondence analysis.
Usage
fast_dca(dat, clusters1 = NULL, clusters2 = NULL, members = FALSE)
Arguments
dat |
Input data: can be a table or a data frame (but the data frame must have only two columns). |
clusters1 |
A clustering of the first set of levels: either a list or the output of |
clusters2 |
A clustering of the second set of levels: either a list or the output of |
members |
Logical indicating whether the (supplementary) coordinates for the individual levels should also be computed. |
Value
A list with components:
val |
The eigenvalues or principal inertias, indicating how much each latent axis explains. |
cen1 |
The coordinates of the cluster centers for the first set of levels. |
cen2 |
The coordinates of the cluster centers for the second set of levels. |
mem1 |
If |
mem2 |
If |
References
Abdi, H. (2007) Discriminant correspondence analysis. In: N. Salkind (ed.) Encyclopedia of measurement and statistics. Thousand Oaks: SAGE.
Examples
SndT_Fra <- read.table(system.file("extdata", "SndT_Fra.txt", package = "svs"),
header = TRUE, sep = "\t", quote = "\"", encoding = "UTF-8",
stringsAsFactors = FALSE)
sca_SndT_Fra <- fast_sca(SndT_Fra)
kcl_SndT_Fra <- kmeans(sca_SndT_Fra$pos1, centers = 7)
dca_SndT_Fra <- fast_dca(SndT_Fra, clusters1 = kcl_SndT_Fra)
dca_SndT_Fra