epspath {svrpath} | R Documentation |
Fit the entire epsilon
path for Support Vector Regression
Description
The Suport Vector Regression (SVR) employs epsilon-intensive loss which ignores errors smaller than epsilon. This algorithm computes the entire paths for SVR solution as a function of epsilon
at a given regularization parameter lambda
, which we call epsilon
path.
Usage
epspath(x, y, lambda = 1, kernel.function = radial.kernel,
param.kernel = 1, ridge = 1e-08, eps = 1e-07, eps.min = 1e-08, ...)
Arguments
x |
The data matrix (n x p) with n rows (observations) on p variables (columns) |
y |
The real number valued response variable |
lambda |
The regularization parameter value. |
kernel.function |
User defined kernel function. See |
param.kernel |
Parameter(s) of the kernels. See |
ridge |
Sometimes the algorithm encounters singularities; in this case a small value of ridge can help, default is |
eps |
A small machine number which is used to identify minimal step sizes |
eps.min |
The smallest value of epsilon for termination of the algorithm. Default is |
... |
Generic compatibility |
Value
An 'epspath' object is returned.
Author(s)
Do Hyun Kim, Seung Jun Shin
See Also
predict.epspath
, plot.epspath
, svrpath
Examples
set.seed(1)
n <- 30
p <- 50
x <- matrix(rnorm(n*p), n, p)
e <- rnorm(n, 0, 1)
beta <- c(1, 1, rep(0, p-2))
y <- x %*% beta + e
lambda <- 1
eobj <- epspath(x, y, lambda = lambda)