predict.svmpath {svmpath} | R Documentation |
Make predictions from a "svmpath" object
Description
Provide a value for lambda
, and produce the fitted lagrange alpha
values. Provide values for x
, and get fitted function values or
class labels.
Usage
## S3 method for class 'svmpath'
predict(object, newx, lambda, type = c("function", "class",
"alpha", "margin"),...)
Arguments
object |
fitted |
newx |
values of |
lambda |
the value of the regularization parameter. Note that
|
type |
type of prediction, with default |
... |
Generic compatibility |
Details
This implementation of the SVM uses a parameterization that is slightly
different but equivalent to the usual (Vapnik) SVM. Here
\lambda=1/C
.
The Lagrange multipliers are related via
\alpha^*_i=\alpha_i/\lambda
, where
\alpha^*_i
is the usual multiplier, and
\alpha_i
our multiplier. Note that if alpha=0
, that
observation is right of the elbow; alpha=1
, left of the elbow;
0<alpha<1
on the elbow. The latter two cases are all support
points.
Value
In each case, the desired prediction.
Author(s)
Trevor Hastie
References
The paper http://www-stat.stanford.edu/~hastie/Papers/svmpath.pdf, as well as the talk http://www-stat.stanford.edu/~hastie/TALKS/svmpathtalk.pdf.
See Also
coef.svmpath, svmpath
Examples
data(svmpath)
attach(balanced.overlap)
fit <- svmpath(x,y,trace=TRUE,plot=TRUE)
predict(fit, lambda=1,type="alpha")
predict(fit, x, lambda=.9)
detach(2)