predict.sltime {survivalSL} | R Documentation |
Prediction from a Super Learner for Censored Outcomes
Description
Predict the survival of new observations based on an SL by using the survivalSL
function.
Usage
## S3 method for class 'sltime'
predict(object, newdata, newtimes, ...)
Arguments
object |
An object returned by the function |
newdata |
An optional data frame containing covariate values at which to produce predicted values. There must be a column for every covariate included in |
newtimes |
The times at which to produce predicted values. The default value is |
... |
For future methods. |
Value
times |
A vector of numeric values with the times of the |
predictions |
A matrix with the predictions of survivals of each subject (lines) for each observed time (columns). |
See Also
Examples
data(dataDIVAT2)
# The training of the super learner from the first 150 individuals of the data base
sl1 <- survivalSL(method=c("LIB_COXridge", "LIB_AFTggamma"), metric="ci",
data=dataDIVAT2[1:150,], times="times", failures="failures", pro.time = 12,
cov.quanti=c("age"), cov.quali=c("hla", "retransplant", "ecd"), cv=3)
# Individual prediction for 2 new subjects
pred <- predict(sl1,
newdata=data.frame(age=c(52,52), hla=c(0,1), retransplant=c(1,1), ecd=c(0,1)))
plot(y=pred$predictions$sl[1,], x=pred$times, xlab="Time (years)",
ylab="Predicted survival", col=1, type="l", lty=1, lwd=2, ylim=c(0,1))
lines(y=pred$predictions$sl[2,], x=pred$times, col=2, type="l", lty=1, lwd=2)
legend("bottomright", col=c(1,2), lty=1, lwd=2, c("Subject #1", "Subject #2"))