plot.coxph_mpl_dc {survivalMPLdc} | R Documentation |
Plot a baseline hazard estimates from coxph_mpl_dc Object
Description
Plot the baseline hazard with the confidence interval estimates
Usage
## S3 method for class 'coxph_mpl_dc'
plot(
x,
parameter = "theta",
funtype = "hazard",
xout,
se = TRUE,
ltys,
cols,
...
)
Arguments
x |
an object inheriting from class |
parameter |
the set of parameters of interest. Indicate |
funtype |
the type of function for ploting, i.e. |
xout |
the time values for the baseline hazard plot |
se |
se=TRUE gives both the MPL baseline estimates and 95% confidence interval plots while se=FALSE gives only the MPL baseline estimate plot. |
ltys |
a line type vector with two components, the first component is the line type of the baseline hazard while the second component is the line type of the 95% confidence interval |
cols |
a colour vector with two components, the first component is the colour of the baseline hazard while the second component is the colour the 95% confidence interval |
... |
other arguments |
Details
When the input is of class coxph_mpl_dc
and parameters=="theta"
, the baseline estimates
base on \theta
and xout (with the corresponding 95% confidence interval if se=TRUE ) are ploted.
When the input is of class coxph_mpl_dc
and parameters=="gamma"
, the baseline hazard estimates
based on \gamma
and xout (with the corresponding 95% confidence interval if se=TRUE ) are ploted.
Value
the baseline hazard plot
Author(s)
Jing Xu, Jun Ma, Thomas Fung
References
Brodaty H, Connors M, Xu J, Woodward M, Ames D. (2014). "Predictors of institutionalization in dementia: a three year longitudinal study". Journal of Alzheimers Disease 40, 221-226.
Xu J, Ma J, Connors MH, Brodaty H. (2018). "Proportional hazard model estimation under dependent censoring using copulas and penalized likelihood". Statistics in Medicine 37, 2238–2251.
See Also
coef.coxph_mpl_dc
, coxph_mpl_dc.control
, coxph_mpl_dc
Examples
##-- Copula types
copula3 <- 'frank'
##-- A real example
##-- One dataset from Prospective Research in Memory Clinics (PRIME) study
##-- Refer to article Brodaty et al (2014),
## the predictors of institutionalization of dementia patients over 3-year study period
data(PRIME)
surv<-as.matrix(PRIME[,1:3]) #time, event and dependent censoring indicators
cova<-as.matrix(PRIME[, -c(1:3)]) #covariates
colMeans(surv[,2:3]) #the proportions of event and dependent censoring
n<-dim(PRIME)[1];print(n)
p<-dim(PRIME)[2]-3;print(p)
names(PRIME)
##--MPL estimate Cox proportional hazard model for institutionalization under medium positive
##--dependent censoring
control <- coxph_mpl_dc.control(ordSp = 4,
binCount = 200, tie = 'Yes',
tau = 0.5, copula = copula3,
pent = 'penalty_mspl', smpart = 'REML',
penc = 'penalty_mspl', smparc = 'REML',
cat.smpar = 'No' )
coxMPLests_tau <- coxph_mpl_dc(surv=surv, cova=cova, control=control, )
plot(x = coxMPLests_tau, parameter = "theta", funtype="hazard",
xout = seq(0, 36, 0.01), se = TRUE,
cols=c("blue", "red"), ltys=c(1, 2), type="l", lwd=1, cex=1, cex.axis=1, cex.lab=1,
xlab="Time (Month)", ylab="Hazard",
xlim=c(0, 36), ylim=c(0, 0.05)
)
title("MPL Hazard", cex.main=1)
legend( 'topleft',legend = c( expression(tau==0.5), "95% Confidence Interval"),
col = c("blue", "red"),
lty = c(1, 2),
cex = 1)
plot(x = coxMPLests_tau, parameter = "theta", funtype="cumhazard",
xout = seq(0, 36, 0.01), se = TRUE,
cols=c("blue", "red"), ltys=c(1, 2),
type="l", lwd=1, cex=1, cex.axis=1, cex.lab=1,
xlab="Time (Month)", ylab="Hazard",
xlim=c(0, 36), ylim=c(0, 1.2)
)
title("MPL Cumulative Hazard", cex.main=1)
legend( 'topleft',
legend = c( expression(tau==0.5), "95% Confidence Interval"),
col = c("blue", "red"),
lty = c(1, 2),
cex = 1
)
plot(x = coxMPLests_tau, parameter = "theta", funtype="survival",
xout = seq(0, 36, 0.01), se = TRUE,
cols=c("blue", "red"), ltys=c(1, 2),
type="l", lwd=1, cex=1, cex.axis=1, cex.lab=1,
xlab="Time (Month)", ylab="Hazard",
xlim=c(0, 36), ylim=c(0, 1)
)
title("MPL Survival", cex.main=1)
legend( 'bottomleft',
legend = c( expression(tau==0.5), "95% Confidence Interval"),
col = c("blue", "red"),
lty = c(1, 2),
cex = 1
)