coef.coxph_mpl_dc {survivalMPLdc} | R Documentation |
Extract regression coefficients of a coxph_mpl_dc Object
Description
Extract the matrix of regression coefficients with their corresponding standard errors,
z
-statistics and p
-values of the model part of interest of a coxph_mpl_dc
object
Usage
## S3 method for class 'coxph_mpl_dc'
coef(object, parameter, ...)
Arguments
object |
an object inheriting from class |
parameter |
the set of parameters of interest. Indicate |
... |
other arguments |
Details
When the input is of class coxph_mpl_dc
and parameters=="beta"
,
the matrix of beta estimates with corresponding standar errors, z
-statistics and p
-values are reported. When the input is of class coxph_mpl_dc
and parameters=="phi"
,
the matrix of phi estimates with corresponding standar errors, z
-statistics and p
-values are reported.
Value
est |
a matrix of coefficients with standard errors, z-statistics and corresponding p-values |
Author(s)
Jing Xu, Jun Ma, Thomas Fung
References
Brodaty H, Connors M, Xu J, Woodward M, Ames D. (2014). "Predictors of institutionalization in dementia: a three year longitudinal study". Journal of Alzheimers Disease 40, 221-226.
Xu J, Ma J, Connors MH, Brodaty H. (2018). "Proportional hazard model estimation under dependent censoring using copulas and penalized likelihood". Statistics in Medicine 37, 2238–2251.
See Also
plot.coxph_mpl_dc
, coxph_mpl_dc.control
, coxph_mpl_dc
Examples
##-- Copula types
copula3 <- 'frank'
##-- A real example
##-- One dataset from Prospective Research in Memory Clinics (PRIME) study
##-- Refer to article Brodaty et al (2014),
## the predictors of institutionalization of dementia patients over 3-year study period
data(PRIME)
surv<-as.matrix(PRIME[,1:3]) #time, event and dependent censoring indicators
cova<-as.matrix(PRIME[, -c(1:3)]) #covariates
colMeans(surv[,2:3]) #the proportions of event and dependent censoring
n<-dim(PRIME)[1];print(n)
p<-dim(PRIME)[2]-3;print(p)
names(PRIME)
##--MPL estimate Cox proportional hazard model for institutionalization under independent censoring
control <- coxph_mpl_dc.control(ordSp = 4,
binCount = 200, tie = 'Yes',
tau = 0.5, copula = copula3,
pent = 'penalty_mspl', smpart = 'REML',
penc = 'penalty_mspl', smparc = 'REML',
cat.smpar = 'No' )
coxMPLests_tau <- coxph_mpl_dc(surv=surv, cova=cova, control=control, )
MPL_beta<-coef(object = coxMPLests_tau, parameter = "beta",)
MPL_phi<-coef(object = coxMPLests_tau, parameter = "phi",)