| Beran {survidm} | R Documentation | 
Estimation of the conditional distribution function of the response, given the covariate under random censoring.
Description
Computes the conditional survival probability P(T > y|Z = z)
Usage
 Beran(time, status, covariate, delta, x, y, kernel = "gaussian", bw, lower.tail = FALSE)
Arguments
time | 
 The survival time of the process.  | 
status | 
 Censoring indicator of the total time of the process; 0 if the total time is censored and 1 otherwise.  | 
covariate | 
 Covariate values for obtaining estimates for the conditional probabilities.  | 
delta | 
 Censoring indicator of the covariate.  | 
x | 
 The first time (or covariate value) for obtaining estimates for the conditional probabilities. If missing, 0 will be used.  | 
y | 
 The total time for obtaining estimates for the conditional probabilities.  | 
kernel | 
 A character string specifying the desired kernel. See details below for possible options. Defaults to "gaussian" where the gaussian density kernel will be used.  | 
bw | 
 A single numeric value to compute a kernel density bandwidth.  | 
lower.tail | 
 logical; if FALSE (default), probabilities are P(T > y|Z = z) otherwise, P(T <= y|Z = z).  | 
Details
Possible options for argument window are "gaussian", "epanechnikov", "tricube", "boxcar", "triangular", "quartic" or "cosine".
Author(s)
Luis Meira-Machado, Marta Sestelo and Gustavo Soutinho
References
R. Beran. Nonparametric regression with randomly censored survival data. Technical report, University of California, Berkeley, 1981.
Examples
obj <- with(colonIDM, survIDM(time1, event1, Stime, event))
obj0 <- obj
#P(T>y|age=45)
library(KernSmooth)
h <- dpik(colonIDM$age)
Beran(time = obj0$Stime, status = obj0$event, covariate = colonIDM$age,
x = 45, y = 730, bw = h)
#P(T<=y|age=45)
Beran(time = obj0$Stime, status = obj0$event, covariate = colonIDM$age,
x = 45, y = 730, bw = h, lower.tail = TRUE)