rescaled.bootstrap.weights {surveybootstrap} | R Documentation |
rescaled.bootstrap.weights
Description
This function creates a dataset with rescaled bootstrap weights;
it can be a helpful alternative to bootstrap.estimates
in some situations
Usage
rescaled.bootstrap.weights(
survey.data,
survey.design,
num.reps,
weights = NULL,
idvar,
verbose = TRUE,
parallel = FALSE,
paropts = NULL
)
Arguments
survey.data |
The dataset to use |
survey.design |
A formula describing the design of the survey
(see Details in |
num.reps |
the number of bootstrap replication samples to draw |
weights |
weights to use in estimation (or NULL, if none) |
idvar |
the name of the column in |
verbose |
if TRUE, produce lots of feedback about what is going on |
parallel |
if TRUE, use the plyr library's .parallel argument to produce bootstrap resamples and estimates in parallel |
paropts |
if not NULL, additional arguments to pass along to the parallelization routine |
Details
The formula describing the survey design should have the form
~ psu_v1 + psu_v2 + ... + strata(strata_v1 + strata_v2 + ...)
,
where psu_v1, ...
are the variables identifying primary sampling units (PSUs)
and strata_v1, ...
identify the strata
Value
if no summary.fn is specified, then return the list of estimates produced by estimator.fn; if summary.fn is specified, then return its output
Examples
survey <- MU284.complex.surveys[[1]]
rescaled.bootstrap.weights(survey.data = survey,
survey.design = ~ CL,
weights='sample_weight',
idvar='LABEL',
num.reps = 2)
## Not run:
bootweights <- rescaled.bootstrap.weights(
# formula describing survey design:
# psu and strata
survey.design = ~ psu +
stratum(stratum_analysis),
num.reps=10000,
# column with respondent ids
idvar='caseid',
# column with sampling weight
weights='wwgt',
# survey dataset
survey.data=mw.ego)
## End(Not run)