| bootstrap.estimates {surveybootstrap} | R Documentation | 
bootstrap.estimates
Description
Use a given bootstrap method to estimate sampling uncertainty from a given estimator.
Usage
bootstrap.estimates(
  survey.data,
  survey.design,
  bootstrap.fn,
  estimator.fn,
  num.reps,
  weights = NULL,
  ...,
  summary.fn = NULL,
  verbose = TRUE,
  parallel = FALSE,
  paropts = NULL
)
Arguments
| survey.data | The dataset to use | 
| survey.design | A formula describing the design of the survey (see Details below) | 
| bootstrap.fn | Name of the method to be used to take bootstrap resamples | 
| estimator.fn | The name of a function which, given a dataset like
 | 
| num.reps | The number of bootstrap replication samples to draw | 
| weights | Weights to use in estimation (or  | 
| ... | additional arguments which will be passed on to  | 
| summary.fn | (Optional) Name of a function which, given the set of estimates
produced by  | 
| verbose | If  | 
| parallel | If  | 
| paropts | If not  | 
Details
The formula describing the survey design should have the form
~ psu_v1 + psu_v2 + ... + strata(strata_v1 + strata_v2 + ...),
where psu_v1, ... are the variables identifying primary sampling units (PSUs)
and strata_v1, ... identifies the strata
Value
If summary.fn is not specified, then return the list of estimates
produced by estimator.fn; if summary.fn is specified, then return
its output
Examples
# example using a simple random sample
survey <- MU284.surveys[[1]]
estimator <- function(survey.data, weights) {
  plyr::summarise(survey.data,
                  T82.hat = sum(S82 * weights))
}
ex.mu284 <- bootstrap.estimates(
   survey.design = ~1,
   num.reps = 10,
   estimator.fn = estimator,
   weights='sample_weight',
   bootstrap.fn = 'srs.bootstrap.sample',
   survey.data=survey)
## Not run: 
idu.est <- bootstrap.estimates(
  ## this describes the sampling design of the
  ## survey; here, the PSUs are given by the
  ## variable cluster, and the strata are given
  ## by the variable region
  survey.design = ~ cluster + strata(region),
  ## the number of bootstrap resamples to obtain
  num.reps=1000,
  ## this is the name of the function
  ## we want to use to produce an estimate
  ## from each bootstrapped dataset
  estimator.fn="our.estimator",
  ## these are the sampling weights
  weights="indweight",
  ## this is the name of the type of bootstrap
  ## we wish to use
  bootstrap.fn="rescaled.bootstrap.sample",
  ## our dataset
  survey.data=example.survey,
  ## other parameters we need to pass
  ## to the estimator function
  d.hat.vals=d.hat,
  total.popn.size=tot.pop.size,
  y.vals="clients",
  missing="complete.obs")
## End(Not run)