bootstrap.estimates {surveybootstrap} | R Documentation |
bootstrap.estimates
Description
Use a given bootstrap method to estimate sampling uncertainty from a given estimator.
Usage
bootstrap.estimates(
survey.data,
survey.design,
bootstrap.fn,
estimator.fn,
num.reps,
weights = NULL,
...,
summary.fn = NULL,
verbose = TRUE,
parallel = FALSE,
paropts = NULL
)
Arguments
survey.data |
The dataset to use |
survey.design |
A formula describing the design of the survey (see Details below) |
bootstrap.fn |
Name of the method to be used to take bootstrap resamples |
estimator.fn |
The name of a function which, given a dataset like
|
num.reps |
The number of bootstrap replication samples to draw |
weights |
Weights to use in estimation (or |
... |
additional arguments which will be passed on to |
summary.fn |
(Optional) Name of a function which, given the set of estimates
produced by |
verbose |
If |
parallel |
If |
paropts |
If not |
Details
The formula describing the survey design should have the form
~ psu_v1 + psu_v2 + ... + strata(strata_v1 + strata_v2 + ...)
,
where psu_v1, ...
are the variables identifying primary sampling units (PSUs)
and strata_v1, ...
identifies the strata
Value
If summary.fn
is not specified, then return the list of estimates
produced by estimator.fn
; if summary.fn
is specified, then return
its output
Examples
# example using a simple random sample
survey <- MU284.surveys[[1]]
estimator <- function(survey.data, weights) {
plyr::summarise(survey.data,
T82.hat = sum(S82 * weights))
}
ex.mu284 <- bootstrap.estimates(
survey.design = ~1,
num.reps = 10,
estimator.fn = estimator,
weights='sample_weight',
bootstrap.fn = 'srs.bootstrap.sample',
survey.data=survey)
## Not run:
idu.est <- bootstrap.estimates(
## this describes the sampling design of the
## survey; here, the PSUs are given by the
## variable cluster, and the strata are given
## by the variable region
survey.design = ~ cluster + strata(region),
## the number of bootstrap resamples to obtain
num.reps=1000,
## this is the name of the function
## we want to use to produce an estimate
## from each bootstrapped dataset
estimator.fn="our.estimator",
## these are the sampling weights
weights="indweight",
## this is the name of the type of bootstrap
## we wish to use
bootstrap.fn="rescaled.bootstrap.sample",
## our dataset
survey.data=example.survey,
## other parameters we need to pass
## to the estimator function
d.hat.vals=d.hat,
total.popn.size=tot.pop.size,
y.vals="clients",
missing="complete.obs")
## End(Not run)