clusterModel {surveyPrev} | R Documentation |
Calculate cluster model estimates using beta binomial model
Description
This function calculate smoothed direct estimates at given admin level.
Usage
clusterModel(
data,
cluster.info,
admin.info,
admin,
CI = 0.95,
model = c("bym2", "iid"),
stratification = FALSE,
aggregation = FALSE,
overdisp.mean = 0,
overdisp.prec = 0.4
)
Arguments
data |
dataframe that contains the indicator of interests, output of getDHSindicator function |
cluster.info |
dataframe that contains admin 1 and admin 2 information and coordinates for each cluster. |
admin.info |
dataframe that contains population and urban/rural proportion at specific admin level |
admin |
admin level for the model |
CI |
Credible interval to be used. Default to 0.95. |
model |
smoothing model used in the random effect. Options are independent ("iid") or spatial ("bym2"). |
stratification |
whether or not to include urban/rural stratum. |
aggregation |
whether or not report aggregation results. |
overdisp.mean |
prior mean for logit(d), where d is the intracluster correlation. |
overdisp.prec |
prior precision for logit(d), where d is the intracluster correlation. |
Value
This function returns the dataset that contain district name and population for given tiff files and polygons of admin level,
Author(s)
Qianyu Dong
Examples
## Not run:
geo <- getDHSgeo(country = "Zambia", year = 2018)
data(ZambiaAdm1)
data(ZambiaAdm2)
data(ZambiaPopWomen)
cluster.info <- clusterInfo(geo = geo,
poly.adm1 = ZambiaAdm1,
poly.adm2 = ZambiaAdm2)
dhsData <- getDHSdata(country = "Zambia",
indicator = "ancvisit4+",
year = 2018)
data <- getDHSindicator(dhsData, indicator = "ancvisit4")
admin.info1 <- adminInfo(poly.adm = ZambiaAdm1,
admin = 1,
agg.pop =ZambiaPopWomen$admin1_pop,
proportion = ZambiaPopWomen$admin1_urban)
cl_res_ad1 <- clusterModel(data=data,
cluster.info = cluster.info,
admin.info = admin.info1,
stratification = FALSE,
model = "bym2",
admin = 1,
aggregation = TRUE,
CI = 0.95)
cl_res_ad1$res.admin1
# compare with the DHS direct estimates
dhs_table <- get_api_table(country = "ZM",
survey = "ZM2018DHS",
indicator = "RH_ANCN_W_N4P",
simplify = TRUE)
subset(dhs_table, ByVariableLabel == "Five years preceding the survey")
## End(Not run)