| svyqqplot {survey} | R Documentation | 
Quantile-quantile plots for survey data
Description
Quantile-quantile plots either against a specified distribution function or comparing two variables from the same or different designs.
Usage
svyqqplot(formula, design, designx = NULL, na.rm = TRUE, qrule = "hf8",
    xlab = NULL, ylab = NULL, ...)
svyqqmath(x, design, null=qnorm, na.rm=TRUE, xlab="Expected",ylab="Observed",...)
Arguments
| x,formula | A one-sided formula for  | 
| design | Survey design object to look up variables | 
| designx | Survey design object to look up the RHS variable in  | 
| null | Quantile function to compare the data quantiles to | 
| na.rm | Remove missing values | 
| qrule | How to define quantiles for  | 
| xlab,ylab | Passed to  | 
| ... | Graphical options to be passed to  | 
Value
None
See Also
Examples
data(api)
dstrat<-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat,
fpc=~fpc)
svyqqmath(~api99, design=dstrat)
svyqqplot(api00~api99, design=dstrat)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
opar<-par(mfrow=c(1,2))
## sample distributions very different
qqplot(apiclus1$enroll, apistrat$enroll); abline(0,1)
## estimated population distributions much more similar
svyqqplot(enroll~enroll, design=dstrat,designx=dclus1,qrule=survey:::qrule_hf8); abline(0,1)
par(opar)
[Package survey version 4.4-2 Index]