| svycontrast {survey} | R Documentation |
Linear and nonlinearconstrasts of survey statistics
Description
Computes linear or nonlinear contrasts of estimates produced by survey
functions (or any object with coef and vcov methods).
Usage
svycontrast(stat, contrasts, add=FALSE, ...)
Arguments
stat |
object of class |
contrasts |
A vector or list of vectors of coefficients, or a call or list of calls |
add |
keep all the coefficients of the input in the output? |
... |
For future expansion |
Details
If contrasts is a list, the element names are used as
names for the returned statistics.
If an element of contrasts is shorter than coef(stat) and has names, the
names are used to match up the vectors and the remaining elements of
contrasts are assumed to be zero. If the names are not legal
variable names (eg 0.1) they must be quoted (eg "0.1")
If contrasts is a "call" or list of "call"s, and
stat is a svrepstat object including replicates, the
replicates are transformed and used to compute the variance. If
stat is a svystat object or a svrepstat object
without replicates, the delta-method is used to compute variances, and
the calls must use only functions that deriv knows how
to differentiate. If the names are not legal variable names they must
be quoted with backticks (eg `0.1`).
If stats is a svyvar object, the estimates are elements of a matrix and the names are the row and column names pasted together with a colon.
Value
Object of class svrepstat or svystat or svyvar
See Also
regTermTest, svyglm
Examples
data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
a <- svytotal(~api00+enroll+api99, dclus1)
svycontrast(a, list(avg=c(0.5,0,0.5), diff=c(1,0,-1)))
## if contrast vectors have names, zeroes may be omitted
svycontrast(a, list(avg=c(api00=0.5,api99=0.5), diff=c(api00=1,api99=-1)))
## nonlinear contrasts
svycontrast(a, quote(api00/api99))
svyratio(~api00, ~api99, dclus1)
## Example: standardised skewness coefficient
moments<-svymean(~I(api00^3)+I(api00^2)+I(api00), dclus1)
svycontrast(moments,
quote((`I(api00^3)`-3*`I(api00^2)`*`I(api00)`+ 3*`I(api00)`*`I(api00)`^2-`I(api00)`^3)/
(`I(api00^2)`-`I(api00)`^2)^1.5))
## Example: geometric means
## using delta method
meanlogs <- svymean(~log(api00)+log(api99), dclus1)
svycontrast(meanlogs,
list(api00=quote(exp(`log(api00)`)), api99=quote(exp(`log(api99)`))))
## using delta method
rclus1<-as.svrepdesign(dclus1)
meanlogs <- svymean(~log(api00)+log(api99), rclus1)
svycontrast(meanlogs,
list(api00=quote(exp(`log(api00)`)),
api99=quote(exp(`log(api99)`))))
## why is add=TRUE useful?
(totals<-svyby(~enroll,~stype,design=dclus1,svytotal,covmat=TRUE))
totals1<-svycontrast(totals, list(total=c(1,1,1)), add=TRUE)
svycontrast(totals1, list(quote(E/total), quote(H/total), quote(M/total)))
totals2<-svycontrast(totals, list(total=quote(E+H+M)), add=TRUE)
all.equal(as.matrix(totals1),as.matrix(totals2))
## more complicated svyby
means <- svyby(~api00+api99, ~stype+sch.wide, design=dclus1, svymean,covmat=TRUE)
svycontrast(means, quote(`E.No:api00`-`E.No:api99`))
svycontrast(means, quote(`E.No:api00`/`E.No:api99`))
## transforming replicates
meanlogs_r <- svymean(~log(api00)+log(api99), rclus1, return.replicates=TRUE)
svycontrast(meanlogs_r,
list(api00=quote(exp(`log(api00)`)), api99=quote(exp(`log(api99)`))))
## converting covariances to correlations
vmat <-svyvar(~api00+ell,dclus1)
print(vmat,cov=TRUE)
cov2cor(as.matrix(vmat))[1,2]
svycontrast(vmat, quote(`api00:ell`/sqrt(`api00:api00`*`ell:ell`)))