| plot.predict_parts_survival {survex} | R Documentation |
Plot Predict Parts for Survival Models
Description
This function plots objects of class "predict_parts_survival" - local explanations
for survival models created using the predict_parts() function.
Usage
## S3 method for class 'predict_parts_survival'
plot(x, ...)
Arguments
x |
an object of class |
... |
additional parameters passed to the |
Value
An object of the class ggplot.
Plot options
plot.surv_shap
-
x- an object of class"surv_shap"to be plotted -
...- additional objects of classsurv_shapto be plotted together -
title- character, title of the plot -
subtitle- character, subtitle of the plot,'default'automatically generates "created for XXX, YYY models", where XXX and YYY are the explainer labels -
max_vars- maximum number of variables to be plotted (least important variables are ignored) -
colors- character vector containing the colors to be used for plotting variables (containing either hex codes "#FF69B4", or names "blue") -
rug- character, one of"all","events","censors","none"orNULL. Which times to mark on the x axis ingeom_rug(). -
rug_colors- character vector containing two colors (containing either hex codes "#FF69B4", or names "blue"). The first color (red by default) will be used to mark event times, whereas the second (grey by default) will be used to mark censor times.
plot.surv_lime
-
x- an object of class"surv_lime"to be plotted -
type- character, either "coefficients" or "local_importance", selects the type of plot -
show_survival_function- logical, if the survival function of the explanations should be plotted next to the barplot -
...- other parameters currently ignored -
title- character, title of the plot -
subtitle- character, subtitle of the plot,'default'automatically generates "created for XXX, YYY models", where XXX and YYY are the explainer labels -
max_vars- maximum number of variables to be plotted (least important variables are ignored) -
colors- character vector containing the colors to be used for plotting variables (containing either hex codes "#FF69B4", or names "blue")
See Also
Other functions for plotting 'predict_parts_survival' objects:
plot.surv_lime(),
plot.surv_shap()
Examples
library(survival)
library(survex)
model <- randomForestSRC::rfsrc(Surv(time, status) ~ ., data = veteran)
exp <- explain(model)
p_parts_shap <- predict_parts(exp, veteran[1, -c(3, 4)], type = "survshap")
plot(p_parts_shap)
p_parts_lime <- predict_parts(exp, veteran[1, -c(3, 4)], type = "survlime")
plot(p_parts_lime)