plot.predict_parts_survival {survex} | R Documentation |
Plot Predict Parts for Survival Models
Description
This function plots objects of class "predict_parts_survival"
- local explanations
for survival models created using the predict_parts()
function.
Usage
## S3 method for class 'predict_parts_survival'
plot(x, ...)
Arguments
x |
an object of class |
... |
additional parameters passed to the |
Value
An object of the class ggplot
.
Plot options
plot.surv_shap
-
x
- an object of class"surv_shap"
to be plotted -
...
- additional objects of classsurv_shap
to be plotted together -
title
- character, title of the plot -
subtitle
- character, subtitle of the plot,'default'
automatically generates "created for XXX, YYY models", where XXX and YYY are the explainer labels -
max_vars
- maximum number of variables to be plotted (least important variables are ignored) -
colors
- character vector containing the colors to be used for plotting variables (containing either hex codes "#FF69B4", or names "blue") -
rug
- character, one of"all"
,"events"
,"censors"
,"none"
orNULL
. Which times to mark on the x axis ingeom_rug()
. -
rug_colors
- character vector containing two colors (containing either hex codes "#FF69B4", or names "blue"). The first color (red by default) will be used to mark event times, whereas the second (grey by default) will be used to mark censor times.
plot.surv_lime
-
x
- an object of class"surv_lime"
to be plotted -
type
- character, either "coefficients" or "local_importance", selects the type of plot -
show_survival_function
- logical, if the survival function of the explanations should be plotted next to the barplot -
...
- other parameters currently ignored -
title
- character, title of the plot -
subtitle
- character, subtitle of the plot,'default'
automatically generates "created for XXX, YYY models", where XXX and YYY are the explainer labels -
max_vars
- maximum number of variables to be plotted (least important variables are ignored) -
colors
- character vector containing the colors to be used for plotting variables (containing either hex codes "#FF69B4", or names "blue")
See Also
Other functions for plotting 'predict_parts_survival' objects:
plot.surv_lime()
,
plot.surv_shap()
Examples
library(survival)
library(survex)
model <- randomForestSRC::rfsrc(Surv(time, status) ~ ., data = veteran)
exp <- explain(model)
p_parts_shap <- predict_parts(exp, veteran[1, -c(3, 4)], type = "survshap")
plot(p_parts_shap)
p_parts_lime <- predict_parts(exp, veteran[1, -c(3, 4)], type = "survlime")
plot(p_parts_lime)