twinstim_simulation {surveillance} | R Documentation |
Simulation of a Self-Exciting Spatio-Temporal Point Process
Description
The function simEpidataCS
simulates events of a self-exciting
spatio-temporal point process of the "twinstim"
class.
Simulation works via Ogata's modified thinning of the conditional
intensity as described in Meyer et al. (2012). Note that simulation is
limited to the spatial and temporal range of stgrid
.
The simulate
method for objects of class
"twinstim"
simulates new epidemic data using the model and
the parameter estimates of the fitted object.
Usage
simEpidataCS(endemic, epidemic, siaf, tiaf, qmatrix, rmarks,
events, stgrid, tiles, beta0, beta, gamma, siafpars, tiafpars,
epilink = "log", t0 = stgrid$start[1], T = tail(stgrid$stop,1),
nEvents = 1e5, control.siaf = list(F=list(), Deriv=list()),
W = NULL, trace = 5, nCircle2Poly = 32, gmax = NULL, .allocate = 500,
.skipChecks = FALSE, .onlyEvents = FALSE)
## S3 method for class 'twinstim'
simulate(object, nsim = 1, seed = NULL, data, tiles,
newcoef = NULL, rmarks = NULL, t0 = NULL, T = NULL, nEvents = 1e5,
control.siaf = object$control.siaf,
W = data$W, trace = FALSE, nCircle2Poly = NULL, gmax = NULL,
.allocate = 500, simplify = TRUE, ...)
Arguments
endemic |
see |
epidemic |
see |
siaf |
see |
tiaf |
e.g. what is returned by the generating function
|
qmatrix |
see |
rmarks |
function of single time (1st argument) and location
(2nd argument) returning a one-row For the |
events |
|
stgrid |
see |
tiles |
object inheriting from |
beta0 , beta , gamma , siafpars , tiafpars |
these are the parameter subvectors of the |
epilink |
a character string determining the link function to be used for the
|
t0 |
|
T , nEvents |
simulate a maximum of |
W |
see |
trace |
logical (or integer) indicating if (or how often) the current
simulation status should be |
.allocate |
number of rows (events) to initially allocate for the event history;
defaults to 500. Each time the simulated epidemic exceeds the
allocated space, the event |
.skipChecks , .onlyEvents |
these logical arguments are not meant to be set by the user.
They are used by the |
object |
an object of class |
nsim |
number of epidemics (i.e. spatio-temporal point patterns inheriting
from class |
seed |
an object specifying how the random number generator should be
initialized for simulation (via |
data |
an object of class |
newcoef |
an optional named numeric vector of (a subset of) parameters to
replace the original point estimates in |
simplify |
logical. It is strongly recommended to set |
control.siaf |
see |
nCircle2Poly |
see |
gmax |
maximum value the temporal interaction function
|
... |
unused (arguments of the generic). |
Value
The function simEpidataCS
returns a simulated epidemic of class
"simEpidataCS"
, which enhances the class
"epidataCS"
by the following additional components known from
objects of class "twinstim"
:
bbox
, timeRange
, formula
, coefficients
,
npars
, control.siaf
, call
, runtime
.
It has corresponding coeflist
,
residuals
,
R0
, and
intensityplot
methods.
The simulate.twinstim
method has some additional
attributes set on its result:
call
, seed
, and runtime
.
If nsim > 1
, it returns an object of class
"simEpidataCSlist"
, the form of which depends on the value of
simplify
(which is stored as an attribute simplified
):
if simplify = FALSE
, then the return value is
just a list of sequential simulations, each of class
"simEpidataCS"
. However, if simplify = TRUE
, then the
sequential simulations share all components but the simulated
events
, i.e. the result is a list with the same components as
a single object of class "simEpidataCS"
, but with events
replaced by an eventsList
containing the events
returned
by each of the simulations.
The stgrid
component of the returned "simEpidataCS"
will be truncated to the actual end of the simulation, which might
be <T
, if the upper bound nEvents
is reached during
simulation.
CAVE: Currently, simplify=TRUE
in simulate.twinstim
ignores that multiple simulated epidemics
(nsim > 1
) may have different stgrid
time ranges. In a "simEpidataCSlist"
, the stgrid
shared
by all of the simulated epidemics is just the stgrid
returned by the first simulation.
Note
The more detailed the polygons in tiles
are the slower is
the algorithm. You are advised to sacrifice some shape
details for speed by reducing the polygon complexity,
for example via the mapshaper
JavaScript library wrapped by
the R package rmapshaper, or via
simplify.owin
.
Author(s)
Sebastian Meyer, with contributions by Michael Höhle
References
Douglas, D. H. and Peucker, T. K. (1973): Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization, 10, 112-122
Meyer, S., Elias, J. and Höhle, M. (2012): A space-time conditional intensity model for invasive meningococcal disease occurrence. Biometrics, 68, 607-616. doi:10.1111/j.1541-0420.2011.01684.x
See Also
The function simEndemicEvents
is a faster alternative
for endemic-only models, only returning a
"SpatialPointsDataFrame"
of simulated events.
The plot.epidataCS
and animate.epidataCS
methods for plotting and animating continuous-space epidemic data,
respectively, also work for simulated epidemics (by inheritance),
and twinstim
can be used to fit
spatio-temporal conditional intensity models also to simulated data.
Examples
data("imdepi", "imdepifit")
## load borders of Germany's districts (originally obtained from
## the German Federal Agency for Cartography and Geodesy,
## https://gdz.bkg.bund.de/), simplified by the "modified Visvalingam"
## algorithm (level=6.6%) using MapShaper.org (v. 0.1.17):
load(system.file("shapes", "districtsD.RData", package="surveillance"))
plot(districtsD)
plot(stateD, add=TRUE, border=2, lwd=2)
## simulate 2 realizations (over a short period, for speed)
## considering events from data(imdepi) before t=31 as prehistory
mysims <- simulate(imdepifit, nsim=2, seed=1, data=imdepi,
tiles=districtsD, newcoef=c("e.typeC"=-1),
t0=31, T=if (interactive()) 180 else 45, # for CRAN
simplify=TRUE)
## plot both simulations using the plot-method for simEpidataCSlist's
mysims
plot(mysims, aggregate="time")
## extract the second realization -> object of class simEpidataCS
mysim2 <- mysims[[2]]
summary(mysim2)
plot(mysim2, aggregate="space")
### compare the observed _cumulative_ number of cases during the
### first 90 days to 20 simulations from the fitted model
sims <- simulate(imdepifit, nsim=20, seed=1, data=imdepi, t0=0, T=90,
tiles=districtsD, simplify=TRUE)
## extract cusums
getcsums <- function (events) {
tapply(events$time, events@data["type"],
function (t) cumsum(table(t)), simplify=FALSE)
}
csums_observed <- getcsums(imdepi$events)
csums_simulated <- lapply(sims$eventsList, getcsums)
## plot it
plotcsums <- function (csums, ...) {
mapply(function (csum, ...) lines(as.numeric(names(csum)), csum, ...),
csums, ...)
invisible()
}
plot(c(0,90), c(0,35), type="n", xlab="Time [days]",
ylab="Cumulative number of cases")
plotcsums(csums_observed, col=c(2,4), lwd=3)
legend("topleft", legend=levels(imdepi$events$type), col=c(2,4), lwd=1)
invisible(lapply(csums_simulated, plotcsums,
col=adjustcolor(c(2,4), alpha=0.5)))
## Not run:
### Experimental code to generate 'nsim' simulations of 'nm2add' months
### beyond the observed time period:
nm2add <- 24
nsim <- 5
### The events still infective by the end of imdepi$stgrid will be used
### as the prehistory for the continued process.
origT <- tail(imdepi$stgrid$stop, 1)
## extend the 'stgrid' by replicating the last block 'nm2add' times
## (i.e., holding "popdensity" constant)
stgridext <- local({
gLast <- subset(imdepi$stgrid, BLOCK == max(BLOCK))
gAdd <- gLast[rep(1:nrow(gLast), nm2add),]; rownames(gAdd) <- NULL
newstart <- seq(origT, by=30, length.out=nm2add)
newstop <- c(newstart[-1], max(newstart) + 30)
gAdd$start <- rep(newstart, each=nlevels(gAdd$tile))
gAdd$stop <- rep(newstop, each=nlevels(gAdd$tile))
rbind(imdepi$stgrid, gAdd, make.row.names = FALSE)[,-1]
})
## create an updated "epidataCS" with the time-extended 'stgrid'
imdepiext <- update(imdepi, stgrid = stgridext)
newT <- tail(imdepiext$stgrid$stop, 1)
## simulate beyond the original period
simsext <- simulate(imdepifit, nsim=nsim, seed=1, t0=origT, T=newT,
data=imdepiext, tiles=districtsD, simplify=TRUE)
## Aside to understand the note from checking events and tiles:
# marks(imdepi)["636",] # tile 09662 is attributed to this event, but:
# plot(districtsD[c("09678","09662"),], border=1:2, lwd=2, axes=TRUE)
# points(imdepi$events["636",])
## this mismatch is due to polygon simplification
## plot the observed and simulated event numbers over time
plot(imdepiext, breaks=c(unique(imdepi$stgrid$start),origT),
cumulative=list(maxat=330))
for (i in seq_along(simsext$eventsList))
plot(simsext[[i]], add=TRUE, legend.types=FALSE,
breaks=c(unique(simsext$stgrid$start),newT),
subset=!is.na(source), # have to exclude the events of the prehistory
cumulative=list(offset=c(table(imdepi$events$type)), maxat=330, axis=FALSE),
border=NA, density=0) # no histogram
abline(v=origT, lty=2, lwd=2)
## End(Not run)