twinstim {surveillance} | R Documentation |
Fit a Two-Component Spatio-Temporal Point Process Model
Description
A twinstim
model as described in Meyer et al. (2012) is fitted to
marked spatio-temporal point process data. This constitutes a
regression approach for conditional intensity function modelling.
The implementation is illustrated in Meyer et al. (2017, Section 3),
see vignette("twinstim")
.
Usage
twinstim(endemic, epidemic, siaf, tiaf, qmatrix = data$qmatrix, data,
subset, t0 = data$stgrid$start[1], T = tail(data$stgrid$stop,1),
na.action = na.fail, start = NULL, partial = FALSE,
epilink = "log", control.siaf = list(F = list(), Deriv = list()),
optim.args = list(), finetune = FALSE,
model = FALSE, cumCIF = FALSE, cumCIF.pb = interactive(),
cores = 1, verbose = TRUE)
Arguments
endemic |
right-hand side formula for the exponential (Cox-like
multiplicative) endemic component. May contain offsets (to be marked
by the special function |
epidemic |
formula representing the epidemic model for the event-specific
covariates (marks) determining infectivity. Offsets are not
implemented here. If omitted or |
siaf |
spatial interaction function. Possible specifications are:
If you run into “false convergence” with a non-constant
|
tiaf |
temporal interaction function. Possible specifications are:
|
qmatrix |
square indicator matrix (0/1 or |
data |
an object of class |
subset |
an optional vector evaluating to logical indicating a subset of
|
t0 , T |
events having occurred during (-Inf;t0] are regarded as part of the
prehistory |
na.action |
how to deal with missing values in |
start |
a named vector of initial values for (a subset of) the parameters.
The names must conform to the conventions of Alternatively, |
partial |
logical indicating if a partial likelihood similar to the approach
by Diggle et al. (2010) should be used (default is |
epilink |
a character string determining the link function to be used for the
|
control.siaf |
a list with elements |
optim.args |
an argument list passed to Initial values for the parameters may be given as list element
Note that For the There may be an extra component Importantly, the Similarly, |
finetune |
logical indicating if a second maximisation should be performed with
robust Nelder-Mead |
model |
logical indicating if the model environment should be kept with the
result, which is required for
|
cumCIF |
logical (default: |
cumCIF.pb |
logical indicating if a progress bar should be shown
during the calculation of |
cores |
number of processes to use in parallel operation. By default
|
verbose |
logical indicating if information should be printed during
execution. Defaults to |
Details
The function performs maximum likelihood inference
for the additive-multiplicative spatio-temporal intensity model
described in Meyer et al. (2012). It uses nlminb
as the
default optimizer and returns an object of class "twinstim"
.
Such objects have print
, plot
and
summary
methods.
The summary
output can be converted via corresponding
xtable
or
toLatex
methods.
Furthermore, the usual accessor methods are implemented, including
coef
, vcov
, logLik
,
residuals
, and
update
.
Additional functionality is provided by the R0
and
simulate
methods.
Value
Returns an S3 object of class "twinstim"
, which is a list with
the following components:
coefficients |
vector containing the MLE. |
loglik |
value of the log-likelihood function at the MLE with a
logical attribute |
counts |
number of log-likelihood and score evaluations during optimization. |
converged |
either |
fisherinfo |
expected Fisher information evaluated at the
MLE. Only non- |
fisherinfo.observed |
observed Fisher information matrix
evaluated at the value of the MLE. Obtained as the negative Hessian.
Only non- |
fitted |
fitted values of the conditional intensity function at the events. |
fittedComponents |
two-column matrix with columns |
tau |
fitted cumulative ground intensities at the event times.
Only non- |
R0 |
estimated basic reproduction number for each event. This equals the spatio-temporal integral of the epidemic intensity over the observation domain (t0;T] x W for each event. |
npars |
vector describing the lengths of the 5 parameter
subvectors: endemic intercept(s) |
qmatrix |
the |
bbox |
the bounding box of |
timeRange |
the time range used for fitting: |
formula |
a list containing the four main parts of the model
specification: |
xlevels |
a record of the levels of the factors used in fitting. |
control.siaf |
see the “Arguments” section above. |
optim.args |
input optimizer arguments used to determine the MLE. |
functions |
if |
call |
the matched call. |
runtime |
the |
If model=TRUE
, the model evaluation environment is assigned to
this list and can thus be queried by calling environment()
on
the result.
Note
twinstim
makes use of the memoise package if it is
available – and that is highly recommended for non-constant
siaf
specifications to speed up calculations. Specifically, the
necessary numerical integrations of the spatial interaction function
will be cached such that they are only calculated once for every
state of the siaf
parameters during optimization.
Author(s)
Sebastian Meyer
Contributions to this documentation by Michael Höhle and Mayeul Kauffmann.
References
Diggle, P. J., Kaimi, I. & Abellana, R. (2010): Partial-likelihood analysis of spatio-temporal point-process data. Biometrics, 66, 347-354.
Martinussen, T. and Scheike, T. H. (2006): Dynamic Regression Models for Survival Data. Springer.
Meyer, S. (2010):
Spatio-Temporal Infectious Disease Epidemiology based on Point Processes.
Master's Thesis, Ludwig-Maximilians-Universität
München.
Available as https://epub.ub.uni-muenchen.de/11703/
Meyer, S., Elias, J. and Höhle, M. (2012): A space-time conditional intensity model for invasive meningococcal disease occurrence. Biometrics, 68, 607-616. doi:10.1111/j.1541-0420.2011.01684.x
Meyer, S. and Held, L. (2014): Power-law models for infectious disease spread. The Annals of Applied Statistics, 8 (3), 1612-1639. doi:10.1214/14-AOAS743
Meyer, S., Held, L. and Höhle, M. (2017): Spatio-temporal analysis of epidemic phenomena using the R package surveillance. Journal of Statistical Software, 77 (11), 1-55. doi:10.18637/jss.v077.i11
Rathbun, S. L. (1996): Asymptotic properties of the maximum likelihood estimator for spatio-temporal point processes. Journal of Statistical Planning and Inference, 51, 55-74.
See Also
vignette("twinstim")
.
There is a simulate.twinstim
method,
which simulates the point process based on the fitted twinstim
.
A discrete-space alternative is offered by the twinSIR
modelling framework.
Examples
# Load invasive meningococcal disease data
data("imdepi")
### first, fit a simple endemic-only model
m_noepi <- twinstim(
endemic = addSeason2formula(~ offset(log(popdensity)) + I(start/365-3.5),
S=1, period=365, timevar="start"),
data = imdepi, subset = !is.na(agegrp)
)
## look at the model summary
summary(m_noepi)
## there is no evidence for a type-dependent endemic intercept (LR test)
m_noepi_type <- update(m_noepi, endemic = ~(1|type) + .)
pchisq(2*c(logLik(m_noepi_type)-logLik(m_noepi)), df=1, lower.tail=FALSE)
### add an epidemic component with just the intercept, i.e.
### assuming uniform dispersal in time and space up to a distance of
### eps.s = 200 km and eps.t = 30 days (see summary(imdepi))
m0 <- update(m_noepi, epidemic=~1, model=TRUE)
## summarize the model fit
summary(m0, correlation = TRUE, symbolic.cor = TRUE)
## the default confint-method can be used for Wald-CI's
confint(m0, level=0.95)
## same "untrimmed" R0 for every event (simple epidemic intercept model)
summary(R0(m0, trimmed=FALSE))
## plot the path of the fitted total intensity
plot(m0, "total intensity", tgrid=500)
## extract "residual process" integrating over space (takes some seconds)
res <- residuals(m0)
# if the model describes the true CIF well _in the temporal dimension_,
# then this residual process should behave like a stationary Poisson
# process with intensity 1
plot(res, type="l"); abline(h=c(0, length(res)), lty=2)
# easier, with CI and serial correlation -> checkResidualProcess()
checkResidualProcess(m0)
## Not run:
## NB: in contrast to nlminb(), optim's BFGS would miss the
## likelihood maximum wrt the epidemic intercept
m0_BFGS <- update(m_noepi, epidemic=~1, optim.args = list(method="BFGS"))
format(cbind(nlminb=coef(m0), BFGS=coef(m0_BFGS)), digits=3, scientific=FALSE)
m0_BFGS$fisherinfo # singular Fisher information matrix here
m0$fisherinfo
logLik(m0_BFGS)
logLik(m0)
## nlminb is more powerful since we make use of the analytical fisherinfo
## as estimated by the model during optimization, which optim cannot
## End(Not run)
### an epidemic-only model?
## for a purely epidemic model, all events must have potential source events
## (otherwise the intensity at the observed event would be 0)
## let's focus on the C-type for this example
imdepiC <- subset(imdepi, type == "C")
table(summary(imdepiC)$nSources)
## 106 events have no prior, close events (in terms of eps.s and eps.t)
try(twinstim(epidemic = ~1, data = imdepiC)) # detects this problem
## let's assume spatially unbounded interaction
imdepiC_infeps <- update(imdepiC, eps.s = Inf)
(s <- summary(imdepiC_infeps))
table(s$nSources)
## for 11 events, there is no prior event within eps.t = 30 days
## (which is certainly true for the first event)
plot(s$counter, main = "Number of infectious individuals over time (eps.t = 30)")
rug(imdepiC_infeps$events$time)
rug(imdepiC_infeps$events$time[s$nSources == 0], col = 2, lwd = 3)
## An endemic component would catch such events (from unobserved sources),
## otherwise a longer infectious period would need to be assumed and
## for the first event to happen, a prehistory is required (e.g., t0 = 31).
## As an example, we fit the data only until T = 638 (all events have ancestors)
m_epi <- twinstim(epidemic = ~1, data = imdepiC_infeps, t0 = 31, T = 638)
summary(m_epi)
### full model with interaction functions (time-consuming)
## estimate an exponential temporal decay of infectivity
m1_tiaf <- update(m0, tiaf=tiaf.exponential())
plot(m1_tiaf, "tiaf", scaled=FALSE)
## estimate a step function for spatial interaction
summary(sourceDists <- getSourceDists(imdepi, "space"))
(knots <- quantile(sourceDists, c(5,10,20,40)/100))
m1_fstep <- update(m0, siaf=knots)
plot(m1_fstep, "siaf", scaled=FALSE)
rug(sourceDists, ticksize=0.02)
## estimate a continuously decreasing spatial interaction function,
## here we use the kernel of an isotropic bivariate Gaussian
m1 <- update(m0, siaf = siaf.gaussian())
AIC(m_noepi, m0, m1_fstep, m1)
summary(m1) # e.siaf.1 is log(sigma), no test for H0: log(sigma) = 0
exp(confint(m1, "e.siaf.1")) # a confidence interval for sigma
plot(m1, "siaf", scaled=FALSE)
## alternative: siaf.powerlaw() with eps.s=Inf and untie()d data,
## see vignette("twinstim")
## add epidemic covariates
m2 <- update(m1, epidemic = ~ 1 + type + agegrp)
AIC(m1, m2) # further improvement
summary(m2)
## look at estimated R0 values by event type
tapply(R0(m2), imdepi$events@data[names(R0(m2)), "type"], summary)