arlCusum {surveillance} | R Documentation |
Calculation of Average Run Length for discrete CUSUM schemes
Description
Calculates the average run length (ARL) for an upward CUSUM scheme for discrete distributions (i.e. Poisson and binomial) using the Markov chain approach.
Usage
arlCusum(h=10, k=3, theta=2.4, distr=c("poisson","binomial"),
W=NULL, digits=1, ...)
Arguments
h |
decision interval |
k |
reference value |
theta |
distribution parameter for the cumulative distribution function
(cdf) |
distr |
|
W |
Winsorizing value |
digits |
|
... |
further arguments for the distribution function, i.e. number of trials |
Value
Returns a list with the ARL of the regular (zero-start)
and the fast initial response (FIR)
CUSUM scheme with reference value k
, decision interval h
for
X \sim F(\theta)
, where F is the Poisson or binomial CDF.
ARL |
one-sided ARL of the regular (zero-start) CUSUM scheme |
FIR.ARL |
one-sided ARL of the FIR CUSUM scheme with head start
|
Source
Based on the FORTRAN code of
Hawkins, D. M. (1992). Evaluation of Average Run Lengths of Cumulative Sum Charts for an Arbitrary Data Distribution. Communications in Statistics - Simulation and Computation, 21(4), p. 1001-1020.