LRCUSUM.runlength {surveillance} | R Documentation |
Run length computation of a CUSUM detector
Description
Compute run length for a count data or categorical CUSUM. The computations are based on a Markov representation of the likelihood ratio based CUSUM.
Usage
LRCUSUM.runlength(mu, mu0, mu1, h, dfun, n, g=5, outcomeFun=NULL, ...)
Arguments
mu |
|
mu0 |
|
mu1 |
|
h |
The threshold h which is used for the CUSUM. |
dfun |
The probability mass function or density used to compute
the likelihood ratios of the CUSUM. In a negative binomial CUSUM
this is |
n |
Vector of length |
g |
The number of levels to cut the state space into when
performing the Markov chain approximation. Sometimes also denoted
|
outcomeFun |
A hook |
... |
Additional arguments to send to |
Details
Brook and Evans (1972) formulated an approximate approach based
on Markov chains to determine the PMF of the run length of a
time-constant CUSUM detector. They describe the dynamics of the CUSUM
statistic by a Markov chain with a discretized state space of
size g+2
. This is adopted to the time varying case in
Höhle (2010) and implemented in R using the ... notation
such that it works for a very large class of distributions.
Value
A list with five components
P |
An array of |
pmf |
Probability mass function (up to length |
cdf |
Cumulative density function (up to length |
arl |
If the model is time homogenous (i.e. if |
Author(s)
M. Höhle
References
Höhle, M. (2010): Online change-point detection in categorical time series. In: T. Kneib and G. Tutz (Eds.), Statistical Modelling and Regression Structures - Festschrift in Honour of Ludwig Fahrmeir, Physica-Verlag, pp. 377-397. Preprint available as https://staff.math.su.se/hoehle/pubs/hoehle2010-preprint.pdf
Höhle, M. and Mazick, A. (2010): Aberration detection in R illustrated by Danish mortality monitoring. In: T. Kass-Hout and X. Zhang (Eds.), Biosurveillance: A Health Protection Priority, CRCPress. Preprint available as https://staff.math.su.se/hoehle/pubs/hoehle_mazick2009-preprint.pdf
Brook, D. and Evans, D. A. (1972): An approach to the probability distribution of cusum run length. Biometrika 59(3):539-549.
See Also
Examples
######################################################
#Run length of a time constant negative binomial CUSUM
######################################################
#In-control and out of control parameters
mu0 <- 10
alpha <- 1/2
kappa <- 2
#Density for comparison in the negative binomial distribution
dY <- function(y,mu,log=FALSE, alpha, ...) {
dnbinom(y, mu=mu, size=1/alpha, log=log)
}
#In this case "n" is the maximum value to investigate the LLR for
#It is assumed that beyond n the LLR is too unlikely to be worth
#computing.
LRCUSUM.runlength( mu=t(mu0), mu0=t(mu0), mu1=kappa*t(mu0), h=5,
dfun = dY, n=rep(100,length(mu0)), alpha=alpha)
h.grid <- seq(3,6,by=0.3)
arls <- sapply(h.grid, function(h) {
LRCUSUM.runlength( mu=t(mu0), mu0=t(mu0), mu1=kappa*t(mu0), h=h,
dfun = dY, n=rep(100,length(mu0)), alpha=alpha,g=20)$arl
})
plot(h.grid, arls,type="l",xlab="threshold h",ylab=expression(ARL[0]))
######################################################
#Run length of a time varying negative binomial CUSUM
######################################################
mu0 <- matrix(5*sin(2*pi/52 * 1:200) + 10,ncol=1)
rl <- LRCUSUM.runlength( mu=t(mu0), mu0=t(mu0), mu1=kappa*t(mu0), h=2,
dfun = dY, n=rep(100,length(mu0)), alpha=alpha,g=20)
plot(1:length(mu0),rl$pmf,type="l",xlab="t",ylab="PMF")
plot(1:length(mu0),rl$cdf,type="l",xlab="t",ylab="CDF")
########################################################
# Further examples contain the binomial, beta-binomial
# and multinomial CUSUMs. Hopefully, these will be added
# in the future.
########################################################
#dfun function for the multinomial distribution (Note: Only k-1 categories are specified).
dmult <- function(y, size,mu, log = FALSE) {
return(dmultinom(c(y,size-sum(y)), size = size, prob=c(mu,1-sum(mu)), log = log))
}
#Example for the time-constant multinomial distribution
#with size 100 and in-control and out-of-control parameters as below.
n <- 100
pi0 <- as.matrix(c(0.5,0.3,0.2))
pi1 <- as.matrix(c(0.38,0.46,0.16))
#ARL_0
LRCUSUM.runlength(mu=pi0[1:2,,drop=FALSE],mu0=pi0[1:2,,drop=FALSE],mu1=pi1[1:2,,drop=FALSE],
h=5,dfun=dmult, n=n, g=15)$arl
#ARL_1
LRCUSUM.runlength(mu=pi1[1:2,,drop=FALSE],mu0=pi0[1:2,,drop=FALSE],mu1=pi1[1:2,,drop=FALSE],
h=5,dfun=dmult, n=n, g=15)$arl