survPen.fit {survPen} | R Documentation |
(Excess) hazard model with multidimensional penalized splines for given smoothing parameters
Description
Fits an (excess) hazard model. If penalized splines are present, the smoothing parameters are specified.
Usage
survPen.fit(
build,
data,
formula,
max.it.beta = 200,
beta.ini = NULL,
detail.beta = FALSE,
method = "LAML",
tol.beta = 1e-04
)
Arguments
build |
list of objects returned by |
data |
an optional data frame containing the variables in the model |
formula |
formula object specifying the model |
max.it.beta |
maximum number of iterations to reach convergence in the regression parameters; default is 200 |
beta.ini |
vector of initial regression parameters; default is NULL, in which case the first beta will be |
detail.beta |
if TRUE, details concerning the optimization process in the regression parameters are displayed; default is FALSE |
method |
criterion used to select the smoothing parameters. Should be "LAML" or "LCV"; default is "LAML" |
tol.beta |
convergence tolerance for regression parameters; default is |
Value
Object of class "survPen" (see survPenObject
for details)
Examples
library(survPen)
# standard spline of time with 4 knots
data <- data.frame(time=seq(0,5,length=100),event=1,t0=0)
form <- ~ smf(time,knots=c(0,1,3,5))
t1 <- eval(substitute(time), data)
t0 <- eval(substitute(t0), data)
event <- eval(substitute(event), data)
# Setting up the model before fitting
model.c <- model.cons(form,lambda=0,data.spec=data,t1=t1,t1.name="time",
t0=rep(0,100),t0.name="t0",event=event,event.name="event",
expected=NULL,expected.name=NULL,type="overall",n.legendre=20,
cl="survPen(form,data,t1=time,event=event)",beta.ini=NULL)
# fitting
mod <- survPen.fit(model.c,data,form)