predict.survPen {survPen} | R Documentation |
Hazard and Survival prediction from fitted survPen
model
Description
Takes a fitted survPen
object and produces hazard and survival predictions given a new set of values for the model covariates.
Usage
## S3 method for class 'survPen'
predict(
object,
newdata,
newdata.ref = NULL,
n.legendre = 50,
conf.int = 0.95,
do.surv = TRUE,
type = "standard",
exclude.random = FALSE,
get.deriv.H = FALSE,
...
)
Arguments
object |
a fitted |
newdata |
data frame giving the new covariates value |
newdata.ref |
data frame giving the new covariates value for the reference population (used only when type="HR") |
n.legendre |
number of nodes to approximate the cumulative hazard by Gauss-Legendre quadrature; default is 50 |
conf.int |
numeric value giving the precision of the confidence intervals; default is 0.95 |
do.surv |
If TRUE, the survival and its lower and upper confidence values are computed. Survival computation requires numerical integration and can be time-consuming so if you only want the hazard use do.surv=FALSE; default is TRUE |
type |
if type="lpmatrix" returns the design matrix (or linear predictor matrix) corresponding to the new values of the covariates; if equals "HR", returns the predicted HR and CIs between newdata and newdata.ref; default is "standard" for classical hazard and survival estimation |
exclude.random |
if TRUE all random effects are set to zero; default is FALSE |
get.deriv.H |
if TRUE, the derivatives wrt to the regression parameters of the cumulative hazard are returned; default is FALSE |
... |
other arguments |
Details
The confidence intervals noted CI.U are built on the log cumulative hazard scale U=log(H) (efficient scale in terms of respect towards the normality assumption)
using Delta method. The confidence intervals on the survival scale are then CI.surv = exp(-exp(CI.U))
Value
List of objects:
haz |
hazard predicted by the model |
haz.inf |
lower value for the confidence interval on the hazard based on the Bayesian covariance matrix Vp (Wood et al. 2016) |
haz.sup |
Upper value for the confidence interval on the hazard based on the Bayesian covariance matrix Vp |
surv |
survival predicted by the model |
surv.inf |
lower value for the confidence interval on the survival based on the Bayesian covariance matrix Vp |
surv.sup |
Upper value for the confidence interval on the survival based on the Bayesian covariance matrix Vp |
deriv.H |
derivatives wrt to the regression parameters of the cumulative hazard. Useful to calculate standardized survival |
HR |
predicted hazard ratio ; only when type = "HR" |
HR.inf |
lower value for the confidence interval on the hazard ratio based on the Bayesian covariance matrix Vp ; only when type = "HR" |
HR.sup |
Upper value for the confidence interval on the hazard ratio based on the Bayesian covariance matrix Vp ; only when type = "HR" |
References
Wood, S.N., Pya, N. and Saefken, B. (2016), Smoothing parameter and model selection for general smooth models (with discussion). Journal of the American Statistical Association 111, 1548-1575
Examples
library(survPen)
data(datCancer) # simulated dataset with 2000 individuals diagnosed with cervical cancer
f1 <- ~tensor(fu,age,df=c(5,5))
# hazard model
mod1 <- survPen(f1,data=datCancer,t1=fu,event=dead,expected=NULL,method="LAML")
# predicting hazard and survival curves for age 60
nt <- seq(0,5,le=50)
pred <- predict(mod1,data.frame(fu=nt,age=60))
pred$haz
pred$surv
# predicting hazard ratio at 1 year according to age (with reference age of 50)
newdata1 <- data.frame(fu=1,age=seq(30,90,by=1))
newdata.ref1 <- data.frame(fu=1,age=rep(50,times=61))
predHR_1 <- predict(mod1,newdata=newdata1,newdata.ref=newdata.ref1,type="HR")
predHR_1$HR
predHR_1$HR.inf
predHR_1$HR.sup
# predicting hazard ratio at 3 years according to age (with reference age of 50)
newdata3 <- data.frame(fu=3,age=seq(30,90,by=1))
newdata.ref3 <- data.frame(fu=3,age=rep(50,times=61))
predHR_3 <- predict(mod1,newdata=newdata3,newdata.ref=newdata.ref3,type="HR")
predHR_3$HR
predHR_3$HR.inf
predHR_3$HR.sup