survC1-package {survC1} | R Documentation |
C-Statistics for Risk Prediction Models with Censored Survival Data
Description
Performes inference of overall adequecy of risk prediction models with censored survival data.
Details
Package: | survC1 |
Type: | Package |
Version: | 1.0-3 |
Date: | 2021-02-10 |
License: | GPL-2 |
LazyLoad: | yes |
Performs inference for C of risk prediction models with censored survival data, using the method proposed by Uno et al. (2011). Inference for the difference in C between two competing prediction models is also implemented.
Author(s)
Hajime Uno
Maintainer: Hajime Uno <huno@jimmy.harvard.edu>
References
Hajime Uno, Tianxi Cai, Michael J. Pencina, Ralph B. D'Agostino, and LJ Wei. On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Statistics in Medicine 2011, 30:1105-16. doi:10.1002/sim.4154
Examples
#==============================================
# read sample data (PBC in survival package)
#==============================================
D=CompCase(pbc[1:200,c(2:4,10:14)])
D[,2]=as.numeric(D[,2]==2)
#==============================================
# Inference of C
#==============================================
tau=365.25*8
C=Inf.Cval(D, tau, itr=200)
round(c(C$Dhat, C$se, C$low95, C$upp95), digits=3)
#==============================================
# Inference of Delta C between 2 models
#==============================================
model0<-D[,c(1:2,4:5)] ;
model1<-D
covs1<-as.matrix(model1[,c(-1,-2)])
covs0<-as.matrix(model0[,c(-1,-2)])
Delta=Inf.Cval.Delta(model0[,1:2], covs0, covs1, tau, itr=200)
round(Delta, digits=3)
#==============================================
# Point estimation via cross-validation
#==============================================
model1=D[,c(1,2,4)]
cvC(model1,tau,cvK=2,Rep=10)
[Package survC1 version 1.0-3 Index]