IntAUC {survAUC} | R Documentation |
Integration of time-dependent AUC curves
Description
Compute summary measures of a time-dependent AUC curve
Usage
IntAUC(AUC, times, S, tmax, auc.type="cumulative")
Arguments
AUC |
A vector of AUCs. |
times |
The vector of time points corresponding to |
S |
A vector of survival probabilities corresponding to |
tmax |
A number specifying the upper limit of the time range for which to compute the summary measure. |
auc.type |
A string defining the type of AUC. 'cumulative' refers to cumulative/dynamic AUC, 'incident' refers to incident/dynamic AUC. |
Details
This function calculates the integral under a time-dependent AUC curve (“IAUC”
measure) using the integration limits [0, tmax
]. The values of the AUC curve are
specified via the AUC
argument.
In case auc.type = "cumulative"
(cumulative/dynamic IAUC), the values of
AUC
are weighted by the estimated probability density of
the time-to-event outcome. In case auc.type = "incident"
(incident/dynamic
IAUC), the values of AUC
are weighted by 2 times the product of the estimated
probability density and the (estimated) survival function of the time-to-event outcome.
The survival function has to be specified via the S
argument.
As shown by Heagerty and Zheng (2005), the incident/dynamic version of IAUC can be interpreted as a global concordance index measuring the probability that observations with a large predictor value have a shorter survival time than observations with a small predictor value. The incident/dynamic version of IAUC has the same interpretation as Harrell's C for survival data.
Value
A scalar number corresponding to the summary measure of interest.
References
Harrell, F. E., R. M. Califf, D. B. Pryor, K. L. Lee and R. A. Rosati (1982).
Evaluating
the yield of medical tests.
Journal of the American Medical Association
247, 2543–2546.
Harrell, F. E., K. L. Lee, R. M. Califf, D. B. Pryor and R. A. Rosati (1984).
Regression
modeling strategies for improved prognostic prediction.
Statistics in Medicine
3, 143–152.
Heagerty, P. J. and Y. Zheng (2005).
Survival model predictive accuracy and
ROC curves.
Biometrics 61, 92–105.
See Also
AUC.cd
, AUC.sh
, AUC.uno
,
AUC.hc
Examples
data(cancer,package="survival")
TR <- ovarian[1:16,]
TE <- ovarian[17:26,]
train.fit <- survival::coxph(survival::Surv(futime, fustat) ~ age,
x=TRUE, y=TRUE, method="breslow", data=TR)
lp <- predict(train.fit)
lpnew <- predict(train.fit, newdata=TE)
Surv.rsp <- survival::Surv(TR$futime, TR$fustat)
Surv.rsp.new <- survival::Surv(TE$futime, TE$fustat)
times <- seq(10, 1000, 10)
AUC_CD <- AUC.cd(Surv.rsp, Surv.rsp.new, lp, lpnew, times)
IntAUC(AUC_CD$auc, AUC_CD$times, runif(length(times),0,1), median(times), auc.type="cumulative")