GHCI {survAUC} | R Documentation |
Gonen and Heller's Concordance Index for Cox models
Description
Gonen and Heller's Concordance Index for Cox proportional hazards models
Usage
GHCI(lpnew)
Arguments
lpnew |
The vector of predictors obtained from the test data. |
Details
This function implements the concordance probability estimator proposed by
Gonen and Heller (2005). It has the same interpretation as Harrell's C for
survival data (implemented in the rcorr.cens
function of the Hmisc
package).
The results obtained from GHCI
are valid as long as lpnew
is the
predictor of a correctly specified Cox proportional hazards model. In this case, the
estimator remains valid even if the censoring times depend on the values of
the predictor.
Note that the smoothed version of GHCI
, which is proposed in Section 3 of
Gonen and Heller (2005), is not implemented in R package survAUC.
Value
A length-one numeric vector containing the concordance probability estimate.
References
Harrell, F. E., R. M. Califf, D. B. Pryor, K. L. Lee and R. A. Rosati (1982).
Evaluating
the yield of medical tests.
Journal of the American Medical Association
247, 2543–2546.
Harrell, F. E., K. L. Lee, R. M. Califf, D. B. Pryor and R. A. Rosati (1984).
Regression
modeling strategies for improved prognostic prediction.
Statistics in Medicine
3, 143–152.
Gonen, M. and G. Heller (2005).
Concordance probability and discriminatory
power in proportional hazards regression.
Biometrika
92, 965–970.
See Also
Examples
data(cancer,package="survival")
TR <- ovarian[1:16,]
TE <- ovarian[17:26,]
train.fit <- survival::coxph(survival::Surv(futime, fustat) ~ age,
x=TRUE, y=TRUE, method="breslow", data=TR)
lpnew <- predict(train.fit, newdata=TE)
GHCI(lpnew)