IC {surtvep} | R Documentation |
calculating information criteria from a coxtp
object
Description
This function is to calculate information criteria from a coxtp
object to select the penalization tuning parameter.
Usage
IC(fit, IC.prox)
Arguments
fit |
model from |
IC.prox |
when calculating information criteria, there might be numerical issues (e.g. the Hessian matrix is close to be singular).
In such cases, warnings will be given.
If |
Details
In order to select the proper smoothing parameter, we utilize the idea of information criteria.
We provide four different information criteria to select the optimal smoothing parameter \lambda
.
Generally, mAIC, TIC and GIC select similar parameters and the difference of resulting estimates are barely noticeable.
See details in the Luo et al. (2023).
Value
model.mAIC |
an object with S3 class |
model.TIC |
an object with S3 class |
model.GIC |
an object with S3 class |
mAIC |
a sequence of mAIC values corresponding to each of the tuning parameter |
TIC |
a sequence of TIC values corresponding to each of the tuning parameter |
GIC |
a sequence of GIC values corresponding to each of the tuning parameter |
References
Akaike, H. (1998) Information theory and an extension of the maximum likelihood principle.
In Selected Papers of Hirotugu Akaike. 199–213.
Luo, L., He, K., Wu, W., and Taylor, J. M. (2023) Using information criteria to select smoothing parameters when analyzing survival data with time-varying coefficient hazard models.
Statistical Methods in Medical Research, in press.
Takeuchi, K. (1976) Distribution of information statistics and criteria for adequacy of models.
Mathematical Sciences, 153: 12–18.
Wu, W., Taylor, J. M., Brouwer, A. F., Luo, L., Kang, J., Jiang, H., and He, K. (2022) Scalable proximal methods for cause-specific hazard modeling with time-varying coefficients.
Lifetime Data Analysis, 28(2): 194-218.
Examples
data(ExampleData)
z <- ExampleData$z
time <- ExampleData$time
event <- ExampleData$event
fit <- coxtp(event = event, z = z, time = time)
IC <- IC(fit)