superpc.predict.red.cv {superpc} | R Documentation |
Cross-validation of feature selection for supervised principal components
Description
Applies superpc.predict.red to cross-validation folds generates in superpc.cv. Uses the output to evaluate reduced models, and compare them to the full supervised principal components predictor.
Usage
superpc.predict.red.cv(fitred,
fitcv,
data,
threshold,
sign.wt="both")
Arguments
fitred |
Output of superpc.predict.red |
fitcv |
Output of superpc.cv |
data |
Training data object |
threshold |
Feature score threshold; usually estimated from superpc.cv |
sign.wt |
Signs of feature weights allowed: "both", "pos", or "neg" |
Value
lrtest.reduced |
Likelihood ratio tests for reduced models |
components |
Number of supervised principal components used |
v.preval.red |
Outcome predictor from reduced models. Array of num.reduced.models by (number of test observations) |
type |
Type of outcome |
call |
calling sequence |
Author(s)
"Eric Bair, Ph.D."
"Jean-Eudes Dazard, Ph.D."
"Rob Tibshirani, Ph.D."
Maintainer: "Jean-Eudes Dazard, Ph.D."
References
E. Bair and R. Tibshirani (2004). "Semi-supervised methods to predict patient survival from gene expression data." PLoS Biol, 2(4):e108.
E. Bair, T. Hastie, D. Paul, and R. Tibshirani (2006). "Prediction by supervised principal components." J. Am. Stat. Assoc., 101(473):119-137.
Examples
## Not run:
set.seed(332)
#generate some data
x <- matrix(rnorm(50*20), ncol=20)
y <- 10 + svd(x[1:10,])$v[,1] + .1*rnorm(20)
ytest <- 10 + svd(x[1:10,])$v[,1] + .1*rnorm(20)
censoring.status <- sample(c(rep(1,15), rep(0,5)))
censoring.status.test <- sample(c(rep(1,15), rep(0,5)))
featurenames <- paste("feature", as.character(1:50), sep="")
data <- list(x=x,
y=y,
censoring.status=censoring.status,
featurenames=featurenames)
data.test <- list(x=x,
y=ytest,
censoring.status=censoring.status.test,
featurenames=featurenames)
a <- superpc.train(data, type="survival")
aa <- superpc.cv(a, data)
fit.red <- superpc.predict.red(a,
data,
data.test,
threshold=.6)
fit.redcv <- superpc.predict.red.cv(fit.red,
aa,
data,
threshold=.6)
## End(Not run)