| NBTrainer {superml} | R Documentation |
Naive Bayes Trainer
Description
Trains a probabilistic naive bayes model
Details
Trains a naive bayes model. It is built on top high performance naivebayes R package.
Public fields
priornumeric vector with prior probabilities. vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.
laplacevalue used for Laplace smoothing. Defaults to 0 (no Laplace smoothing)
usekernelif TRUE, density is used to estimate the densities of metric predictors
modelfor internal use
Methods
Public methods
Method new()
Usage
NBTrainer$new(prior, laplace, usekernel)
Arguments
priornumeric, prior numeric vector with prior probabilities. vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.
laplacenuemric, value used for Laplace smoothing. Defaults to 0 (no Laplace smoothing)
usekernellogical, if TRUE, density is used to estimate the densities of metric predictors
Details
Create a new 'NBTrainer' object.
Returns
A 'NBTrainer' object.
Examples
data(iris) nb <- NBTrainer$new()
Method fit()
Usage
NBTrainer$fit(X, y)
Arguments
Xdata.frame containing train features
ycharacter, name of target variable
Details
Fits the naive bayes model
Returns
NULL, trains and saves the model in memory
Examples
data(iris) nb <- NBTrainer$new() nb$fit(iris, 'Species')
Method predict()
Usage
NBTrainer$predict(X, type = "class")
Arguments
Xdata.frame containing test features
typecharacter, if the predictions should be labels or probability
Details
Returns predictions from the model
Returns
NULL, trains and saves the model in memory
Examples
data(iris) nb <- NBTrainer$new() nb$fit(iris, 'Species') y <- nb$predict(iris)
Method clone()
The objects of this class are cloneable with this method.
Usage
NBTrainer$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
## ------------------------------------------------
## Method `NBTrainer$new`
## ------------------------------------------------
data(iris)
nb <- NBTrainer$new()
## ------------------------------------------------
## Method `NBTrainer$fit`
## ------------------------------------------------
data(iris)
nb <- NBTrainer$new()
nb$fit(iris, 'Species')
## ------------------------------------------------
## Method `NBTrainer$predict`
## ------------------------------------------------
data(iris)
nb <- NBTrainer$new()
nb$fit(iris, 'Species')
y <- nb$predict(iris)