GridSearchCV {superml} | R Documentation |
Grid Search CV
Description
Runs grid search cross validation scheme to find best model training parameters.
Details
Grid search CV is used to train a machine learning model with multiple combinations of training hyper parameters and finds the best combination of parameters which optimizes the evaluation metric. It creates an exhaustive set of hyperparameter combinations and train model on each combination.
Public fields
trainer
superml trainer object, could be either XGBTrainer, RFTrainer, NBTrainer etc.
parameters
a list of parameters to tune
n_folds
number of folds to use to split the train data
scoring
scoring metric used to evaluate the best model, multiple values can be provided. currently supports: auc, accuracy, mse, rmse, logloss, mae, f1, precision, recall
evaluation_scores
parameter for internal use
Methods
Public methods
Method new()
Usage
GridSearchCV$new(trainer = NA, parameters = NA, n_folds = NA, scoring = NA)
Arguments
trainer
superml trainer object, could be either XGBTrainer, RFTrainer, NBTrainer etc.
parameters
list, a list of parameters to tune
n_folds
integer, number of folds to use to split the train data
scoring
character, scoring metric used to evaluate the best model, multiple values can be provided. currently supports: auc, accuracy, mse, rmse, logloss, mae, f1, precision, recall
Details
Create a new 'GridSearchCV' object.
Returns
A 'GridSearchCV' object.
Examples
rf <- RFTrainer$new() gst <-GridSearchCV$new(trainer = rf, parameters = list(n_estimators = c(100), max_depth = c(5,2,10)), n_folds = 3, scoring = c('accuracy','auc'))
Method fit()
Usage
GridSearchCV$fit(X, y)
Arguments
X
data.frame or data.table
y
character, name of target variable
Details
Trains the model using grid search
Returns
NULL
Examples
rf <- RFTrainer$new() gst <-GridSearchCV$new(trainer = rf, parameters = list(n_estimators = c(100), max_depth = c(5,2,10)), n_folds = 3, scoring = c('accuracy','auc')) data("iris") gst$fit(iris, "Species")
Method best_iteration()
Usage
GridSearchCV$best_iteration(metric = NULL)
Arguments
metric
character, which metric to use for evaluation
Details
Returns the best parameters
Returns
a list of best parameters
Examples
rf <- RFTrainer$new() gst <-GridSearchCV$new(trainer = rf, parameters = list(n_estimators = c(100), max_depth = c(5,2,10)), n_folds = 3, scoring = c('accuracy','auc')) data("iris") gst$fit(iris, "Species") gst$best_iteration()
Method clone()
The objects of this class are cloneable with this method.
Usage
GridSearchCV$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
## ------------------------------------------------
## Method `GridSearchCV$new`
## ------------------------------------------------
rf <- RFTrainer$new()
gst <-GridSearchCV$new(trainer = rf,
parameters = list(n_estimators = c(100),
max_depth = c(5,2,10)),
n_folds = 3,
scoring = c('accuracy','auc'))
## ------------------------------------------------
## Method `GridSearchCV$fit`
## ------------------------------------------------
rf <- RFTrainer$new()
gst <-GridSearchCV$new(trainer = rf,
parameters = list(n_estimators = c(100),
max_depth = c(5,2,10)),
n_folds = 3,
scoring = c('accuracy','auc'))
data("iris")
gst$fit(iris, "Species")
## ------------------------------------------------
## Method `GridSearchCV$best_iteration`
## ------------------------------------------------
rf <- RFTrainer$new()
gst <-GridSearchCV$new(trainer = rf,
parameters = list(n_estimators = c(100),
max_depth = c(5,2,10)),
n_folds = 3,
scoring = c('accuracy','auc'))
data("iris")
gst$fit(iris, "Species")
gst$best_iteration()