dataFigure1 {superb} | R Documentation |
Data for Figure 1
Description
The data, taken from (Cousineau 2017), is an example where the "stand-alone" 95\% confidence interval of the means returns a result in contradiction with the result of a statistical test. The paradoxical result is resolved by using adjusted confidence intervals, here the different-adjusted confidence interval.
Usage
data(dataFigure1)
Format
An object of class data.frame.
Source
References
Cousineau D (2017). “Varieties of confidence intervals.” Advances in Cognitive Psychology, 13, 140 – 155. doi:10.5709/acp-0214-z.
Examples
library(ggplot2)
library(gridExtra)
data(dataFigure1)
options(superb.feedback = 'none') # shut down 'warnings' and 'design' interpretation messages
## realize the plot with unadjusted (left) and ajusted (right) 95% confidence intervals
plt1a <- superbPlot(dataFigure1, BSFactors = "grp",
adjustments=list(purpose = "single"),
variables = c("score"), plotStyle="bar" ) +
xlab("Group") + ylab("Score") + labs(title="95% CI\n") +
coord_cartesian( ylim = c(85,115) ) +
geom_hline(yintercept = 100, colour = "black", linewidth = 0.5, linetype=2)
plt1b <- superbPlot(dataFigure1, BSFactors = "grp",
adjustments=list(purpose = "difference"),
variables = c("score"), plotStyle="bar" ) +
xlab("Group") + ylab("Score") + labs(title="Difference-adjusted 95% CI\n") +
coord_cartesian( ylim = c(85,115) ) +
geom_hline(yintercept = 100, colour = "black", linewidth = 0.5, linetype=2)
plt1 <- grid.arrange(plt1a,plt1b,ncol=2)
## realise the correct t-test to see the discrepancy
t.test(dataFigure1$score[dataFigure1$grp==1],
dataFigure1$score[dataFigure1$grp==2],
var.equal=TRUE)
[Package superb version 0.95.9 Index]